首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3245篇
  免费   1415篇
  国内免费   1083篇
化学   873篇
晶体学   37篇
力学   685篇
综合类   88篇
数学   392篇
物理学   3668篇
  2024年   39篇
  2023年   145篇
  2022年   135篇
  2021年   185篇
  2020年   125篇
  2019年   115篇
  2018年   98篇
  2017年   124篇
  2016年   149篇
  2015年   177篇
  2014年   341篇
  2013年   262篇
  2012年   209篇
  2011年   298篇
  2010年   300篇
  2009年   262篇
  2008年   341篇
  2007年   270篇
  2006年   294篇
  2005年   282篇
  2004年   266篇
  2003年   240篇
  2002年   138篇
  2001年   131篇
  2000年   108篇
  1999年   100篇
  1998年   81篇
  1997年   85篇
  1996年   64篇
  1995年   54篇
  1994年   54篇
  1993年   54篇
  1992年   40篇
  1991年   55篇
  1990年   47篇
  1989年   39篇
  1988年   9篇
  1987年   12篇
  1986年   6篇
  1985年   3篇
  1984年   1篇
  1983年   1篇
  1982年   2篇
  1980年   2篇
排序方式: 共有5743条查询结果,搜索用时 31 毫秒
921.
We show that resonant tunneling of electromagnetic (EM) fields can occur through a six-layer structure con- sisting of two pairs of bilayer slabs: one'being an epsilon-negative layer and the other being a mu-negative layer with a double-positive (DPS) medium and air. This type of tunneling is accompanied by high-magnetic field. The Poynting vector distributions and the material dissipation are studied. Our results demonstrate that the EM field in the structure is controlled flexibly by single-negative media and DPS slab. Therefore, this structure has potential applications in wireless energy transfer.  相似文献   
922.
A perturbation method is applied to study the structure of the ground state of the adiabatic quantum optimization for the exact cover 3 problem. It is found that the instantaneous ground state near the end of the evolution is mainly composed of the eigenstates of the problem Hamiltonian, which are Hamming close to the solution state. And the instantaneous ground state immediately after the starting is mainly formed of low energy eigenstates of the problem Hamiltonian. These results are then applied to estimate the minimum gap for a special case.  相似文献   
923.
A kind of hybrid device for acoustic noise reduction and vibration energy harvesting based on the silicon micro- perforated panel (MPP) resonant structure is investigated in the article. The critical parts of the device include MPP and energy harvesting membranes. They are all fabricated by means of silicon micro-electro-mechanical systems (MEMS) tech- nology. The silicon MPP has dense and accurate micro-holes. This noise reduction structure has the advantages of wide band and higher absorption coefficients. The vibration energy harvesting part is formed by square piezoelectric membranes arranged in rows. ZnO material is used as it has a good compatibility with the fabrication process. The MPP, piezo- electric membranes, and metal bracket are assembled into a hybrid device with multifunctions. The device exhibits good performances of acoustic noise absorption and acoustic-electric conversion. Its maximum open circuit voltage achieves 69.41 mV.  相似文献   
924.
The nonlinear interactions between zonal flow and Rossby waves are studied by numerical simulations with focus on the effects of scalar nonlinearity. The numerical results show that the scalar nonlinearity has an appreciable influence on the Rossby dipole evolution and can reduce the threshold of the disturbance energy increase.  相似文献   
925.
The second-order distorted wave Born aPl6roximation (DWBA) method is employed to investigate the triple differen- tial cross sections (TDCS) of coplanar doubly symmetric (e, 2e) collisions for magnesium at excess energies of 6 eV-20 eV. Comparing with the standard first-order DWBA calculations, the inclusion of the second-order Born term in the scattering amplitude improves the degree of agreement with experiments, especially for backward scattering region of TDCS. This indicates that the present second-order Born term is capable to give a reasonable correction to DWBA model in studying coplanar symmetric (e, 2e) problems of two-valence-electron target in low energy range.  相似文献   
926.
Harvesting energy from ambient mechanical vibrations by the piezoelectric effect has been proposed for powering microelectromechanical systems and replacing batteries that have a finite life span. A conventional piezoelectric energy harvester (PEH) is usually designed as a linear resonator, and suffers from a narrow operating bandwidth. To achieve broadband energy harvesting, in this paper we introduce a concept and describe the realization of a novel nonlinear PEH. The proposed PEH consists of a primary piezoelectric cantilever beam coupled to an auxiliary piezoelectric cantilever beam through two movable magnets. For predicting the nonlinear response from the proposed PEH, lumped parameter models are established for the two beams. Both simulation and experiment reveal that for the primary beam, the introduction of magnetic coupling can expand the operating bandwidth as well as improve the output voltage. For the auxiliary beam, the magnitude of the output voltage is slightly reduced, but additional output is observed at off-resonance frequencies. Therefore, broadband energy harvesting can be obtained from both the primary beam and the auxiliary beam.  相似文献   
927.
Relativistic symmetries of the Dirac equation under spin and pseudo-spin symmetries are investigated and a combina- tion of Deng-Fan and Eckart potentials with Coulomb-like and Yukawa-like tensor interaction terms are considered. The energy equation is obtained by using the Nikiforov-Uvarov method and the corresponding wave functions are expressed in terms of the hypergeometric functions. The effects of the Coulomb and Yukawa tensor interactions are numerically discussed as well.  相似文献   
928.
In this paper, we theoretically study the effects of doping concentration ND and an external electric field on the intersubband transitions in InxAl(l-x)N/InyGa(l-y)N single quantum well by solving the Schrodinger and Poisson equations self-consistently. Obtained results including transition energies, the band structure, and the optical absorption have been discussed. The lowest three intersubband transitions (E2 -El), (E3 -El), and (E3 -E2) are calculated as functions of doping concentration ND. By increasing the doping concentration ND, the depletion effect can be reduced, and the ionized electrons will compensate the internal electric field which results from the spontaneous polarization. Our results show that an optimum concentration ND exists for which the transition 0.8 eV (1.55 μm) is carried out. Finally, the dependence of the optical absorption α13(ω) on the external electric field and doping concentration is studied. The maximum of the optical absorption can be red-shifted or blue-shifted through varying the doping concentration and the external electric field. The obtained results can be used for designing optical fiber telecommunications operating at 1.55 μm.  相似文献   
929.
A high order energy preserving scheme for a strongly coupled nonlinear Schrōdinger system is roposed by using the average vector field method. The high order energy preserving scheme is applied to simulate the soliton evolution of the strongly coupled Schrōdinger system. Numerical results show that the high order energy preserving scheme can well simulate the soliton evolution, moreover, it preserves the discrete energy of the strongly coupled nonlinear Schrōdinger system exactly.  相似文献   
930.
Highly oriented pyrolytic graphites are irradiated with 40.5-Me V and 67.7-Me V ^112Sn-ions in a wide range of fluences: 1×10^11 ions/cm^2–1×10^14ions/cm^2. Raman spectra in the region between 1200 cm^-1 and 3500cm^-1 show that the disorder induced by Sn-ions increases with ion fluence increasing. However, for the same fluence, the amount of disorder is greater for 40.5-Me V Sn-ions than that observed for 67.7-Me V Sn-ions, even though the latter has a slightly higher value for electronic energy loss. This is explained by the ion velocity effect. Importantly, ~ 3-cm^-1frequency shift toward lower wavenumber for the D band and ~ 6-cm^-1 shift toward lower wavenumber for the 2D band are observed at a fluence of 1×10^14 ions/cm^2, which is consistent with the scenario of radiation-induced strain. The strain formation is interpreted in the context of inelastic thermal spike model, and the change of the 2D band shape at high ion fluence is explained by the accumulation of stacking faults of the graphene layers activated by radiation-induced strain around ion tracks. Moreover,the hexagonal structure around the ion tracks is observed by scanning tunneling microscopy, which confirms that the strains near the ion tracks locally cause electronic decoupling of neighboring graphene layers.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号