首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   612篇
  免费   32篇
  国内免费   363篇
化学   820篇
晶体学   4篇
力学   6篇
综合类   46篇
数学   22篇
物理学   109篇
  2024年   2篇
  2023年   16篇
  2022年   16篇
  2021年   22篇
  2020年   24篇
  2019年   20篇
  2018年   15篇
  2017年   22篇
  2016年   21篇
  2015年   26篇
  2014年   40篇
  2013年   50篇
  2012年   39篇
  2011年   57篇
  2010年   77篇
  2009年   40篇
  2008年   41篇
  2007年   45篇
  2006年   37篇
  2005年   37篇
  2004年   29篇
  2003年   40篇
  2002年   42篇
  2001年   35篇
  2000年   33篇
  1999年   18篇
  1998年   21篇
  1997年   21篇
  1996年   26篇
  1995年   17篇
  1994年   13篇
  1993年   16篇
  1992年   12篇
  1991年   8篇
  1990年   10篇
  1989年   9篇
  1988年   4篇
  1985年   1篇
  1984年   3篇
  1983年   2篇
排序方式: 共有1007条查询结果,搜索用时 15 毫秒
41.
张小虎  黎明  王延颋  欧阳钟灿 《中国物理 B》2014,23(2):20702-020702
Formation and dissociation mechanisms of C-C+ base pairs in acidic and alkaline environments are investigated, employing ab initio quantum chemical calculations. Our calculations suggest that, in an acidic environment, a cytosine monomer is first protonated and then dimerized with an unprotonated cytosine monomer to form a C-C+ base pair; in an alkaline environment, a protonated cytosine dimer is first unprotonated and then dissociated into two cytosine monomers. In addition, the force for detaching a C-C+ base pair was found to be inversely proportional to the distance between the two cytosine monomers. These results provide a microscopic mechanism to qualitatively explain the experimentally observed reversible formation and dissociation of i-motifs.  相似文献   
42.
建立了一种用十二烷基二甲基苄基氯化铵(BDMDAC)从碱性氰化液中固相萃取金的新方法:在碱性介质中,十二烷基二甲基苄基氯化铵溶液(BDMDAC)与Au(CN)2-络阴离子生成离子缔合物,该离子缔合物可被反相键合硅胶固相萃取柱萃取、富集,用乙醇洗脱,反相键合硅胶固相萃取柱可重复使用。该方法用于从碱性氰化液中固相萃取痕量金,萃取回收率可超过98%。  相似文献   
43.
将金纳米粒子(AuNPs)标记的大肠杆菌O157∶H7(E.coli O157∶H7)的多克隆抗体(PAb)作为二抗,采用氨基偶联法将PAb固定在传感器表面作为一抗,通过三明治方法用双通道表面等离子体子共振(SPR)传感器对E.coli O157∶H7进行检测,并与SPR直接法检测进行了比较.结果表明,直接法的检出限为103cfu/mL,线性范围为103~109cfu/mL;AuNPs增强三明治法的检出限为10 cfu/mL,线性范围为10~1010cfu/mL,灵敏度比直接法提高了100倍,且具有更宽的检测范围.本方法不仅检测时间短,而且具有良好的选择性和重现性.  相似文献   
44.
吗啡啉碱性离子液体催化合成油酸甲酯   总被引:3,自引:0,他引:3  
采用两步法合成了由阳离子N-甲基-N-丁基吗啡啉和阴离子氢氧根搭配的[Nbmm]OH新型碱性离子液体。实验利用FT-IR、元素分析和TGA分别对该离子液体的化学结构和热稳定性进行了表征。结果表明,该离子液体的热稳定性超过200℃。对该离子液体的溶解性能进行了考察, 结果表明,该离子液体能与强极性溶剂互溶,而且其水溶液的碱性较强。为了考察该离子液体对酯化反应的催化活性,实验过程中以油酸和甲醇反应生成油酸甲酯的酯化反应为模型反应,评价该离子液体的催化活性。结果表明,当反应温度60℃、酸醇比为1:6、离子液体加入量为原料总质量的15%、反应10 h时,油酸转化率达93.9%,而且该离子液体易于从反应体系中分离,可以循环使用。  相似文献   
45.
采用溶胶凝胶法,结合相转移法和碱液活化法制备了PVA/SiO2碱性微孔聚合物电解质,通过SEM、XRD、交流阻抗法和循环伏安法表征了电解质的结构与电化学性能.研究表明,PVA/5ωSiO2(ω为质量分数)共混膜上的微孔大小合适,聚合物电解质的离子电导率最大可达1.62×10-2 S cm-1,电化学稳定窗口2 V以上;将PVA/SiO2碱性微孔电解质组装成聚合物镁基镍氢电池,与传统镍氢电池相比,循环稳定性大大增加.  相似文献   
46.
以氯甲基杂环聚醚酮(CMPPEK)为原料,加入三乙胺进行铵化,并分别加入二乙烯三胺(DETA)和二乙胺(DEA),生成的仲胺基(或叔胺基)与邻近分子链氯甲基团进行自交联.经过制膜和离子交换反应,制备了DETA自交联杂萘联苯聚芳醚阴离子交换膜(DETA-QPPEK-OH)和DEA自交联杂萘联苯聚芳醚阴离子交换膜(DEA-QPPEK-OH).采用傅里叶变换红外(FTIR)光谱对制备自交联膜的化学结构进行表征.研究了DETA-QPPEK-OH和DEA-QPPEK-OH膜的理化性质,结果表明前者具有较低吸水率和更低溶胀度.通过研究DETAQPPEK-OH和DEA-QPPEK-OH膜的离子传导率随温度的变化规律,结果表明在80°C时其离子传导率分别达到0.060和0.028 S cm-1,表明本文制备的自交联膜具有较高离子传导率.此外还通过热重分析(TGA)对两类自交联膜的热稳定性进行了研究.  相似文献   
47.
48.
仇旸  谢小红  李文震  邵玉艳 《催化学报》2021,42(12):2094-2104
阴离子交换膜(AEM)燃料电池因具有使用非贵金属作为催化剂的优点而受到广泛关注.然而,在碱性体系中,AEM燃料电池中氢氧化反应(HOR)的反应动力学比在酸性介质中的慢两个数量级.针对HOR在碱中动力学缓慢的问题,有两种主要的理论来解释,(1)pH相关的氢结合能作为主要影响因素来控制HOR动力学的理论;(2)质子和氢氧根离子的吸附共同作为影响因子来控制HOR在碱性条件下的动力学的双功能理论.本文首先讨论了在碱性电解质中可能的HOR反应机理及其Tafel性能变化.除了传统的Tafel-Volmer和Heyrovsky-Volmer-HOR机理外,还讨论了最新提出的氢氧根离子吸附参与的HOR机理来说明在酸性和碱性介质中HOR机理的差异.然后,总结了具有代表性的碱性HOR催化剂(如贵金属、合金、金属间化合物、镍基合金、碳化物、氮化物等),简要介绍了它们相应的HOR反应机理,从而进一步理解在碱性介质中不同基元反应步骤给HOR性能带来的差异.最后,提出了一种未来设计HOR碱性催化剂的可行性方案,为今后碱性环境下的HOR催化剂设计提供参考.  相似文献   
49.
最近,碱性聚合物电解质膜燃料电池(APEMFC)因具有电极反应动力学快以及不依赖于贵金属铂催化剂等诸多优点而成为一个热门话题.作为其中一个关键部件,碱性聚合物电解质膜直接影响燃料电池的性能和成本.然而,迄今为止,仍然没有令人满意的碱性电解质膜材料.为此,大量研究被开展和报道.本文综述了近三年内文献中关于燃料电池碱性聚合物电解质膜的最新研究进展:包括各种各样的合成策略,构效关系,水管理以及非原位或原位稳定性测试等等.尤其是一些新的金属离子基阴离子交换膜和冠醚基阴离子交换膜首次被提及和评论.此外,还进一步预测了将来的发展趋势.  相似文献   
50.
建立了一种用十二烷基二甲基苄基氯化铵(BDMDAC)从碱性氰化液中固相萃取金的新方法:在碱性介质中,十二烷基二甲基苄基氯化铵溶液(BDMDAC)与Au(CN)2-络阴离子生成离子缔合物,该离子缔合物可被反相键合硅胶固相萃取柱萃取、富集,用乙醇洗脱,反相键合硅胶固相萃取柱可重复使用。该方法用于从碱性氰化液中固相萃取痕量金,萃取回收率可超过98%。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号