首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2752篇
  免费   1726篇
  国内免费   2350篇
化学   3165篇
晶体学   576篇
力学   32篇
综合类   67篇
数学   7篇
物理学   2981篇
  2024年   89篇
  2023年   197篇
  2022年   220篇
  2021年   223篇
  2020年   213篇
  2019年   228篇
  2018年   190篇
  2017年   229篇
  2016年   220篇
  2015年   237篇
  2014年   397篇
  2013年   430篇
  2012年   330篇
  2011年   331篇
  2010年   339篇
  2009年   315篇
  2008年   313篇
  2007年   257篇
  2006年   267篇
  2005年   200篇
  2004年   224篇
  2003年   203篇
  2002年   175篇
  2001年   189篇
  2000年   141篇
  1999年   106篇
  1998年   60篇
  1997年   96篇
  1996年   56篇
  1995年   75篇
  1994年   69篇
  1993年   34篇
  1992年   53篇
  1991年   28篇
  1990年   31篇
  1989年   24篇
  1988年   14篇
  1987年   6篇
  1986年   9篇
  1985年   7篇
  1984年   2篇
  1959年   1篇
排序方式: 共有6828条查询结果,搜索用时 15 毫秒
921.
We devise three sorts of doped left-handed materials (DLHMs) by introducing inductors and capacitors into the traditional left-handed material (LHM) as heterogeneous elements. Some new properties are presented through finitedifference time-domain (FDTD) simulations. On the one hand, the resonance in the traditional LHM is weakened and the original pass band is narrowed by introducing inductors. On the other hand, the original pass band of the LHM can be shifted and a new pass band can be generated by introducing capacitors. When capacitors and inductors are introduced simultaneously, the resonance of traditional LHM is somewhat weakened and the number of original pass bands as well as its bandwidth can be changed.  相似文献   
922.
钒离子掺杂对TiO2光催化剂薄膜催化活性的影响   总被引:4,自引:0,他引:4  
采用溶胶凝胶工艺在普通玻璃表面制备了钒离子非均匀掺杂的TiO2薄膜,运用XRD研究了其光催化复合薄膜的表面特征.以光催化降解甲基橙溶液为模型反应,表征薄膜的光催化活性,结果表明,将钒离子富集在TiO2薄膜内部时,最佳掺杂浓度为1.0%(V/Ti原子百分比),最佳降解表观速率常数为7.44×10-3min-1,约是纯TiO2的2.3倍,有效地提高了TiO2半导体的光催化效率.通过XPS与电化学方法进行分析,说明将钒离子富集在TiO2薄膜内部十分有利于电子-空穴的分离,增强了光生电子与空穴的分离效率.  相似文献   
923.
924.
王庐岩  陈晓  庄文昌  赵继宽  隋震鸣  柴永存 《化学学报》2004,62(11):1007-1013,M003
利用聚合物大分子作构建组分,将其掺杂到不同类型表面活性剂构成的溶致液晶中,考察对液晶相结构的影响.利用小角X射线散射及偏光显微镜对聚合物掺杂前后液晶的结构进行表征,并讨论了聚合物与液晶模板间的相互作用.对阴离子型表面活性剂琥珀酸二异辛酯磺酸钠(AOT)/水液晶体系,聚合物的嵌入使层间距d增大;而对非离子表面活性剂十二烷基聚氧乙烯醚(C12EO4)/水体系,除小分子量的聚乙二醇PEG400外,其它聚合物嵌入使d减小,表明聚合物分子类型、大小及浓度对溶致液晶的结构参数甚至组装方式有不同的影响机制.  相似文献   
925.
926.
对p型掺杂13 μm InAs/GaAs量子点激光器的最大模式增益进行了实验和理论分析.实验上,测量了不同腔长激光器阈值电流密度与总损耗的对应关系,拟合出的最大模式增益为175 cm-1,与相同结构非掺杂量子点激光器的最大模式增益一致.同时理论分析表明,p型掺杂对InAs/GaAs量子点激光器的最大模式增益并无影响,并且最大模式增益的计算结果与实验值相符.具有较小高度或高宽比的量子点能达到更高的最大模式增益,而较高的最大模式增益对p型掺杂13 μm InAs/GaAs自组织量子点激光器在光通信系统中的应用具有重要意义. 关键词: 最大模式增益 p型掺杂 InAs/GaAs量子点激光器  相似文献   
927.
采用传统固相反应法制备了0.94(Na0.5 Bi0.) TiO3-0.06BaTiO3-3wt; Bi2 O3-xwt; Nd2O3(x=0,1.5)陶瓷.研究了Bi3+和Nd3+掺杂对0.94 (Na0.5 Bi05)TiO3-0.06BaTiO3陶瓷结构和电学性能的影响.结果表明,Bi2O3和Nd2O3掺杂不影响0.94(Na0.5 Bi0.5) TiO3-0.06BaTiO3的钙钛矿结构.3wt; Bi2O3添加使得铁电陶瓷0.94(Na0.5Bi05) TiO3-0.06BaTiO3转变为反铁电陶瓷.反铁电陶瓷0.94(Na0.5Bi0.5)TiO3-0.06BaTiO3-3wt; Bi2O3具有更高的相转变温度Tm(~320℃).Nd2O3添加不改变0.94(Na0.5 Bi0.5) TiO3-0.06BaTiO3-3wt; Bi2O3陶瓷的反铁电态,但增强了陶瓷的介电性能和弛豫性能.  相似文献   
928.
采用浸渍法制备不同负载量NiFe2 O4的负载型光催化剂NiFe2 O4/g-C3 N4,利用XRD、FT-IR、N2-adsorption、ICP-OES、TEM及XPS等手段表征NiFe2 O4/g-C3 N4样品,并考察其对甲基橙的可见光催化降解性能.结果表明,与NiFe2 O4和g-C3 N4样品相比,负载型NiFe2 O4/g-C3 N4样品对甲基橙具有更好的光催化降解活性,且催化活性随着NiFe2 O4负载量增大(0.5~5.0wt;)而呈现先增大再减小的趋势.NiFe2 O4负载量2.0wt;的样品2-NiFe/CN在可见光照射下对浓度5 mg·L-1的甲基橙表现出最好的降解活性和稳定性.这是因为能带宽度小(1.5 eV)的NiFe2 O4与能带宽度大(2.7 eV)的g-C3 N4形成的异质结催化剂NiFe2 O4/g-C3 N4,有效地促进光生载流子在二者界面快速传递和光生电子-空穴对的有效分离.  相似文献   
929.
将磺化聚苯乙炔(SPPA)与多壁碳纳米管(MWNT)超声共混制备得到SPPA/MWNT复合材料. 用四探针电阻率测试、场发射扫描电镜(FESEM)、XPS、UV-Vis、XRD等方法对复合材料导电机理进行研究. 结果表明, SPPA/MWNT的电导率发生两次突跃;掺杂剂MWNT具有低的临界阈值; 临界阈值附近, 复合材料中MWNT具有不连续分布的现象及复合材料电阻呈负温度系数(NTC)效应; SPPA/MWNT复合材料中MWNT的碳原子对SPPA 进行掺杂. 推测复合材料的导电机理为, 共轭聚合物SPPA不仅被导电粒子MWNT物理填充, 同时还被MWNT的碳原子掺杂, 使复合材料中存在两种导电通路而导电, 一是因被掺杂而成为高电导率主体的SPPA相互接触形成的导电通路, 二是MWNT相互接触形成的导电通路.  相似文献   
930.
运用基于密度泛函理论的第一性原理,研究掺杂W、Mo在镍基高温合金的沉淀强化γ′相分配差异的因素.通过VASP软件,建立γ′-Ni3(Al3/8Ti5/8)相的体系模型,选取非等效位置的不同阵点,计算W、Mo原子在不同位置的替代形成能,分析W、Mo在γ′相的占位倾向;计算掺杂W、Mo原子前后,界面的吸附能,研究掺杂W、Mo对相界的影响;计算W、Mo原子从γ向γ′相扩散,获得W、Mo扩散的路径与势垒.结果表明,W、Mo的掺杂优先替代γ′-Ni3(Al3/8Ti5/8)相5号Al原子,并提高相界的稳定性;分配的差异是W相比于Mo替代γ′相位置的Al原子更易形成空位,而γ相中的Ni原子较难形成空位,且逆扩散所需能量更多导致的.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号