首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1803篇
  免费   480篇
  国内免费   810篇
化学   1422篇
晶体学   83篇
力学   70篇
综合类   61篇
数学   440篇
物理学   1017篇
  2024年   18篇
  2023年   81篇
  2022年   96篇
  2021年   105篇
  2020年   67篇
  2019年   90篇
  2018年   58篇
  2017年   81篇
  2016年   82篇
  2015年   96篇
  2014年   176篇
  2013年   152篇
  2012年   130篇
  2011年   129篇
  2010年   130篇
  2009年   131篇
  2008年   156篇
  2007年   159篇
  2006年   115篇
  2005年   111篇
  2004年   101篇
  2003年   109篇
  2002年   82篇
  2001年   80篇
  2000年   80篇
  1999年   81篇
  1998年   67篇
  1997年   46篇
  1996年   44篇
  1995年   34篇
  1994年   48篇
  1993年   40篇
  1992年   31篇
  1991年   18篇
  1990年   18篇
  1989年   28篇
  1988年   6篇
  1987年   6篇
  1986年   2篇
  1985年   2篇
  1984年   1篇
  1983年   3篇
  1982年   1篇
  1980年   2篇
排序方式: 共有3093条查询结果,搜索用时 31 毫秒
191.
随着光学成像技术的不断突破,荧光可视化已经从简单的肉眼观察逐步向宽场显微、共聚焦显微、超分辨成像等方向发展.然而,荧光可视化在薄膜基材料中的传感应用依然以肉眼观察以及少量的宽场显微为主要分析手段.同时,薄膜基材料结构和性质的可视化分析研究也滞后于荧光可视化技术的发展.基于此,结合本课题组近几年的研究成果,本文系统评述了荧光共聚焦显微技术在薄膜基材料体相分散状态和表面性质的可视化分析中的应用进展,并对当前薄膜基荧光传感材料面临的问题和可能的解决方案进行了简要探讨.  相似文献   
192.
通过简便的两步直接固相反应,即在室温下的固相自组装反应制备Ni席夫碱配合物前驱体,然后通过高温固相热解碳化和硒化反应,原位制备了N,Se共掺杂碳限域的NiSe纳米晶复合物。采用X射线衍射(XRD)、扫描电镜(SEM)、透射电镜(TEM)、X射线光电子能谱(XPS)和热重分析(TGA)等表征技术分别对其物相、形貌结构、组分和含量等进行分析,并通过循环伏安、恒电流充放电和电化学阻抗谱等方法测试其电化学储钠性能。研究结果表明,复合物中NiSe粒子的平均尺寸为100 nm,被均匀限域在N,Se共掺杂的碳基体中;得益于该结构的优势,复合物作为钠离子电池负极材料时,在0.1 A·g~(-1)的电流密度下充放电循环100次后仍保持291 mAh·g~(-1)的可逆充电比容量,保持了首圈充电比容量的88%。同时,在5 A·g~(-1)的电流密度下,可逆充电比容量为197 mAh·g~(-1)。  相似文献   
193.
锂硫电池因其较高的理论容量和对环境友好等优势被视为极具发展潜力的储能装置,但是多硫化物的穿梭效应极大地限制了锂硫电池的实际应用。本文以葡萄糖为碳源,离子液体为氮源和硫源,KCl和ZnCl2为模板剂,KOH为活化剂,通过热解工艺合成了氮硫共掺杂多孔碳(NSPC)。XPS和极性吸附实验表明N、S杂原子成功引入并且提高了碳材料对多硫化物的吸附能力,有效缓解多硫化物的穿梭效应,而较高的比表面积(1290.67 m2·g-1)有助于提高硫负载量。负载70.1wt.%的硫后(S@NSPC)作为锂硫电池的正极材料表现出了良好的电化学性能。在167.5 mA·g-1的电流密度下S@NSPC的首次放电容量为1229.2 mAh·g-1,远高于S@PC的861.6 mAh·g-1,且S@NSPC循环500圈后容量为328.1 mAh·g-1。当电流密度从3350 mA·g-1恢复至167.5 mA·g-1时,可逆容量达到首圈放电比容量的80%,几乎恢复至其初始值。  相似文献   
194.
本文以市售芦丁为原料,在吡啶中经醋酸酐酰化后再水解得外标含量为99.7%的高纯度芦丁;然后以此高纯度芦丁为原料,以3代聚酰胺-胺树枝状聚合物为催化剂,在甲醇中经环氧乙烷羟乙基化反应,精制后得高含量曲克芦丁。本文系统研究了以高纯度芦丁为原料,反应温度、时间和压强对曲克芦丁合成的影响。实验表明,芦丁经酰化后再水解可得到纯度为99.7%的高纯度芦丁,在高压釜内,压强0.2MPa、温度80℃条件下反应5 h,得到的粗品曲克芦丁只需简单纯化便可得到外标纯度大于98.5%的曲克芦丁。  相似文献   
195.
建立了基于低共熔溶剂的涡旋辅助悬浮固化-分散液液微萃取(VA-DLLME-SFDES)结合高效液相色谱测定水样中三氯生和三氯卡班的新方法。合成了6种疏水性低共熔溶剂(DES)并测定其密度、熔点和辛醇-水分配系数(K_(OW))。选取其中低密度、合适凝固点的DES作为萃取剂,样品经涡旋辅助萃取后冷冻,萃取剂固化附着于离心管内壁,弃去水相后,融化离心进样。最佳萃取条件为:选取由薄荷醇∶十二醇(摩尔比为1∶2)制备的DES作为萃取剂,萃取剂用量为70μL,水样pH值调至5.0,涡旋时间为1 min。在最优条件下,三氯生和三氯卡班分别在0.59~100μg/L和0.26~100μg/L质量浓度范围内线性关系良好(r~2=0.999 8),方法检出限(S/N=3)为0.08~0.18μg/L,富集倍数为141~148倍,回收率为86.0%~115%,日内精密度(n=6)和日间精密度(n=6)均不大于5.4%。该方法简便、快速,且萃取相易于收集,适用于水中三氯生和三氯卡班的测定。  相似文献   
196.
采用共沸精镏辅助的原位法成功合成了高度分散的Pd纳米颗粒负载在ZSM-5中(Pd/ZSM-5-IS)分子筛催化剂。通过XRD、TEM、XPS等手段对Pd/ZSM-5-IS的样品进行了表征,并考察反应压力、反应温度、反应时间对肉桂醛加氢催化性能的影响。结果表明:原位法制备的Pd/ZSM-5-IS催化剂比浸渍法制备的Pd/ZSM-5-IM催化剂具有更高的催化稳定性,其主要归因于Pd纳米颗粒进入ZSM-5的晶内介孔有效防止活性位点的损失和聚集。当反应温度为80℃,反应压力为1 MPa,反应时间为3 h时为最佳反应条件,肉桂醛的转化率为87.23%,苯丙醛的选择性为76.68%。  相似文献   
197.
在低共熔溶剂氯化胆碱/草酸催化作用下,由醛、吲哚和6,10-二氧杂螺[4.5]十烷-7,9-二酮三组分多米诺Knoevenagel-Michael反应合成了一系列新型螺环吲哚衍生物,产率为70%~97%.该方法条件温和,操作简单,反应时间短,对环境友好等优点,且催化剂廉价易得.  相似文献   
198.
采用熔融晶化法制备了主晶相为SrF_2的Er~(3+)-Yb~(3+)共掺透明氟氧化物玻璃陶瓷,利用DSC、XRD、SEM、UV-Vis-NIR和荧光光谱对样品的结构、形貌、发光性能进行了测试与表征。研究表明:该体系玻璃最佳热处理温度为620℃,最佳热处理时间为2h,并讨论了Yb~(3+)不同掺杂浓度对Er~(3+)-Yb~(3+)共掺玻璃陶瓷样品上转换发光性能的影响,确定Er~(3+)-Yb~(3+)最佳掺杂浓度比为1∶7,同时观察到了明亮的绿光(522,540 nm)和较弱的红光(656 nm),对Er~(3+)和Yb~(3+)之间的能量传递过程进行了讨论。  相似文献   
199.
针对氮化碳(C3N4)光生电荷易复合、光催化性能有限的不足,我们制备N和F共掺杂C3N4(NF-C3N4),以提升其光催化性能。利用NH4F在高温下原位分解产生的HF和NH3,对C3N4刻蚀的同时实现N和F双元素共掺杂。以氯化铵(NH4Cl)为对照,制备N掺杂C3N4(N-C3N4)。利用扫描电子显微镜(SEM)、能谱仪(EDS)、X射线光电子能谱(XPS)、X射线衍射(XRD)、比表面积测试和电化学表征手段研究N、F共掺杂对C3N4形貌、成分、结构和物化性质等的影响规律。相比于C3N4和N-C3N4,NF-C3N4呈多孔状,比表面积增大,光生电荷的生成、分离和转移均被促进,NF-C3N4光催化还原Cr (Ⅵ)的速率是C3N4的2.6倍、N-C3N4的1.7倍。进一步考察了不同前驱体(尿素、双氰胺和三聚氰胺)对制备C3N4的影响,发现以尿素为前驱体的C3N4与NH4F的质量比为3∶2时,NF-C3N4呈现最佳的光催化性能。催化剂用量、光照强度、空穴捕获剂浓度的增加和pH的降低均能提高Cr (Ⅵ)还原速率。在NF-C3N4浓度为0.1 g·L-1、pH=3、cEDTA-2Na=2 mmol·L-1、40 min可见光照射后,Cr (Ⅵ)去除率达到90%。5次循环实验表明,优化制备的NF-C3N4光催化还原Cr (Ⅵ)的性能保持良好,具有较高的稳定性。  相似文献   
200.
魏家祺  陈晓东  李述周 《电化学》2022,28(10):2214012
氢气是一种清洁、高效、可再生的新型能源,并且是未来碳中和能源供应中最具潜力的化石燃料替代品。因此,可持续氢能源制造具有极大的吸引力与迫切的需求,尤其是通过清洁、环保、零排放的电解水方法。然而,目前的电解水反应受到其缓慢的动力学以及低成本/能源效率的制约。在这些方面,电化学合成通过制造先进的电催化剂和提供更高效/增值的共电解替代品,为提高水电解的效率和效益提供了广阔的前景。它是一种环保、简单的通过电解或其他电化学操作,对从分子到纳米尺度的材料进行制造的方法。本文首先介绍了电化学合成的基本概念、设计方法以及常用方法。然后,总结了电化学合成技术在电解水领域的应用及进展。我们专注于电化学合成的纳米结构电催化剂以实现更高效的电解水制氢,以及小分子的电化学氧化以取代电解水制氢中的析氧共反应,实现更高效、 增值的共电解制氢。我们系统地讨论了电化学合成条件与产物的关系,以启发未来的探索。最后,本文讨论了电化学合成在先进电解水以及其他能量转换和储存应用方面的挑战和前景。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号