首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   910篇
  免费   0篇
化学   897篇
力学   4篇
数学   1篇
物理学   8篇
  2024年   25篇
  2023年   332篇
  2022年   83篇
  2021年   135篇
  2020年   195篇
  2019年   108篇
  2018年   1篇
  2017年   28篇
  2016年   2篇
  2015年   1篇
排序方式: 共有910条查询结果,搜索用时 15 毫秒
101.
In this study, a practical and straightforward synthesis of β-(E)-trifluoromethylstyrenes by ruthenium-catalyzed CH bond activation was developed. The readily available and inexpensive 2-bromo-3,3,3-trifluoropropene (BTP), a non-ozone depleting reagent, was used as a reservoir of 3,3,3-trifluoropropyne. With this approach, the monofunctionalization of a panel of heteroarenes was possible in a safe and scalable manner (23 examples, up to 87 % yield). Mechanistic investigations and density functional theory (DFT) calculations were also conducted to get a better understanding of the mechanism of this transformation. These studies suggested that 1) a cyclometallated ruthenium complex enabled the transformation, 2) this complex exhibited high efficiency in this transformation compared to the commercially available [RuCl2(p-cymene)]2 and 3) the mechanism proceeded through a bis-cyclometallated ruthenium intermediate for the carboruthenation step.  相似文献   
102.
Non-biological catalysts following the governing principles of enzymes are attractive systems to disclose unprecedented reactivities. Most of those existing catalysts feature an adaptable molecular recognition site for substrate binding that are prone to undergo conformational selection pathways. Herein, we present a non-biological catalyst that is able to bind substrates via the induced fit model according to in-depth computational calculations. The system, which is constituted by an inflexible substrate-recognition site derived from a zinc-porphyrin in the second coordination sphere, features destabilization of ground states as well as stabilization of transition states for the relevant iridium-catalyzed CH bond borylation of pyridine. In addition, this catalyst appears to be most suited to tightly bind the transition state rather than the substrate. Besides these features, which are reminiscent of the action modes of enzymes, new elementary catalytic steps (i. e. CB bond formation and catalyst regeneration) have been disclosed owing to the unique distortions encountered in the different intermediates and transition states.  相似文献   
103.
UV irradiation of solutions of a guanidinate coordinated dimagnesium(I) compound, [{(Priso)Mg}2] 3 (Priso=[(DipN)2CNPri2], Dip=2,6-diisopropylphenyl), in either benzene, toluene, the three isomers of xylene, or mesitylene, leads to facile activation of an aromatic CH bond of the solvent in all cases, and formation of aryl/hydride bridged magnesium(II) products, [{(Priso)Mg}2(μ-H)(μ-Ar)] 4 – 9 . In contrast to similar reactions reported for β-diketiminate coordinated counterparts of 3 , these CH activations proceed with little regioselectivity, though they are considerably faster. Reaction of 3 with an excess of the pyridine, p-NC5H4But (pyBut), gave [(Priso)Mg(pyButH)(pyBut)2] 10 , presumably via reduction of the pyridine to yield a radical intermediate, [(Priso)Mg(pyBut⋅)(pyBut)2] 11 , which then abstracts a proton from the reaction solvent or a reactant. DFT calculations suggest two possible pathways to the observed arene CH activations. One of these involves photochemical cleavage of the MgMg bond of 3 , generating magnesium(I) doublet radicals, (Priso)Mg⋅. These then doubly reduce the arene substrate to give “Birch-like” products, which subsequently rearrange via CH activation of the arene. Circumstantial evidence for the photochemical generation of transient magnesium radical species includes the fact that irradiation of a cyclohexane solution of 3 leads to an intramolecular aliphatic CH activation process and formation of an alkyl-bridged magnesium(II) species, [{Mg(μ-PrisoH)}2] 12 . Furthermore, irradiation of a 1 : 1 mixture of 3 and the β-diketiminato dimagnesium(I) compound, [{(DipNacnac)Mg}2] (DipNacnac=[HC(MeCNDip)2]), effects a “scrambling” reaction, and the near quantitative formation of an unsymmetrical dimagnesium(I) compound, [(Priso)MgMg(DipNacnac)] 13 . Finally, the EPR spectrum (77 K) of a glassed solution of UV irradiated 3 is dominated by a broad featureless signal, indicating the presence of a doublet radical species.  相似文献   
104.
A facile and environmentally friendly electrochemical protocol is herein reported for the C(sp2)C(sp3) cross dehydrogenative coupling between imidazopyridines and N,N-dimethylanilines. The broad functional group compatibility includes halogens, ester, alcohol, sulfone as well as thiophene. This methodology is also suitable for benzo[d]imidazo[2,1-b]thiazole, thiazoimidazole and tetrahydroisoquinoline, and can be scaled up to 5 mmol. Mechanistic insights are discussed.  相似文献   
105.
During the past two decades, single-atom-centered medium-sized germanium clusters [M@Gen] (M=transition metals, n>12) have been extensively explored, both from theoretical perspectives and experimental gas-phase syntheses. However, the actual structural arrangements of the Ge13 and Ge14 endohedral cages are still ambiguous and have long remained an unresolved problem for experimental implementation. In this work, we successfully synthesize 13-/14-vertex Ge clusters [Nb@Ge13]3 ( 1 ) and [Nb@Ge14]3 ( 2 ), which are structurally characterized and exhibit unprecedented topologies, neither classical deltahedra nor 3-connected polyhedral structures. Theoretical analysis indicates that the major stabilization of the Ge backbones arises due to the substantial interaction of Ge 4p-AOs with the endohedral Nb 4d-AOs through three/four-center two-electron bonds with an enhanced electron density accumulated over the shortest NbGe13 contact in 1 . Low occupancies of the direct two-center two-electron (2c–2e) NbGe and GeGe σ bonds point to a considerable degree of electron delocalization over the Ge cages revealing their electron deficiency.  相似文献   
106.
The stereoselective copper-mediated hydroxylation of intramolecular CH bonds from tridentate ligands is reinvestigated using DFT calculations. The computational study aims at deciphering the mechanism of CH hydroxylation obtained after reaction of Cu(I) precursors with dioxygen, using ligands bearing either activated ( L1 ) or non-activated ( L2 ) CH bonds. Configurational analysis allows rationalization of the experimentally observed regio- and stereoselectivity. The computed mechanism involves the formation of a side-on peroxide species ( P ) in equilibrium with the key intermediate bis-(μ-oxo) isomer ( O ) responsible for the CH activation step. The P/O equilibrium yields the same activation barrier for the two complexes. However, the main difference between the two model complexes is observed during the CH activation step, where the complex bearing the non-activated CH bonds yields a higher energy barrier, accounting for the experimental lack of reactivity of this complex under those conditions.  相似文献   
107.
A novel Pd-catalysed oxidative coupling between benzoic acids and vinylarenes or acrylates to furnish isocoumarins and phthalides is reported. The reaction proceeds smoothly in molten tetrabutylammonium acetate via a selective CH bond activation, with very low percentage of ligand-free palladium acetate as the catalyst, under atmospheric pressure of oxygen. Sub-stoichiometric amount of copper acetate is also required as a reoxidant for the palladium.  相似文献   
108.
The gold-catalyzed ring-opening rearrangement of cyclopropenes affords an efficient route to either polysubstituted naphthols or aryl-substituted furans. Owing to the unique dichotomy of goldcarbenes, this protocol provides a switchable reaction selectivity between naphthols and furans enabled by the use of TFPAu(MeCN)SbF6 (tri(2-furyl) phosphine) or PNP(AuNTf2)2 (bis(diphenylphosphino)(isopropyl) amine) as catalysts respectively. It is proposed that the goldcarbene intermediate might be involved in the cyclopropene→naphthol rearrangement while the gold-carbocation is more likely to be involved in the cyclopropene→furan rearrangement.  相似文献   
109.
In this paper, the mechanism of the full catalytic cycle for binuclear Cu(I)-catalyzed sulfonyl azide-alkyne cycloaddition reaction for the synthesis of triazolopyrimidines was rationalized by density functional theoretical (DFT) calculations. The computed reaction route consists of: (a) formation of dicopper intermediates, including CH activation of terminal alkyne, 3+2 ring cycloaddition and ring-reducing reaction and transmetalation, (b) interrupted CuAAC reaction, including di-copper catalyzed ring-opening of 2H-azirines and CC bond formation to generate the copper-triazoles and -ketenimines, (c) two-step CN cross-coupling and following (d) multi-step hydrogen transfer by the hydrogen bonding chain of water to promote the CN formation and another CN cleavage through the removal of p-tolyl sulfonamides. Our DFT results indicate that the multi-step hydrogen transfer process is the rate-determining step along the potential energy surface profile. The explicit water model was used for systematic determination of barrier for CC cross-coupling, CN bond formation and cleavage, and p-tolylsulfonamide removal. A critical insight in the interrupted CuAAC reaction was proposed. Further prediction interprets H2O hydrogen bond chain plays an important role in CN bond formation and cleavage, and the removal of p-tolylsulfonamide. This may have fundamental guidance on the design of 1, 5-herterocyclic functionalized triazolopyrimidines via interrupted CuAAC rearrangement reaction, as well as hydrogen bond chain of water.  相似文献   
110.
A label-free DNA-based electrochemical biosensor owning high sensitivity and selectivity has been established for detecting bisphenol A in a wide range of applications. Coupling the high electrochemical performance of graphene oxide-thionine-Au nanomaterial with the specific binding capacity of the aptamers to BPA, the monitoring of trace amount of BPA was realized, the detection limit was 3.3 pg ⋅ mL1 with strong anti-interference. Besides, using molecular docking, it was found that BPA binds to the bases DC-49, DC-51, DG-52, DG-53 and DA-63 on the aptamer via hydrogen bonding and π-π stacking interactions. Finally, the biosensor had been successfully applied in different real samples.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号