首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2070篇
  免费   430篇
  国内免费   545篇
化学   2438篇
晶体学   123篇
力学   12篇
综合类   5篇
物理学   467篇
  2024年   10篇
  2023年   33篇
  2022年   68篇
  2021年   96篇
  2020年   165篇
  2019年   80篇
  2018年   88篇
  2017年   76篇
  2016年   125篇
  2015年   139篇
  2014年   176篇
  2013年   271篇
  2012年   161篇
  2011年   121篇
  2010年   99篇
  2009年   105篇
  2008年   141篇
  2007年   135篇
  2006年   126篇
  2005年   122篇
  2004年   109篇
  2003年   103篇
  2002年   69篇
  2001年   48篇
  2000年   57篇
  1999年   31篇
  1998年   38篇
  1997年   28篇
  1996年   39篇
  1995年   42篇
  1994年   36篇
  1993年   20篇
  1992年   27篇
  1991年   13篇
  1990年   8篇
  1989年   4篇
  1988年   2篇
  1987年   2篇
  1986年   5篇
  1985年   3篇
  1983年   2篇
  1982年   5篇
  1980年   4篇
  1979年   2篇
  1978年   1篇
  1977年   1篇
  1976年   1篇
  1975年   2篇
  1973年   2篇
  1972年   2篇
排序方式: 共有3045条查询结果,搜索用时 15 毫秒
81.
Lithiation of van der Waals tetrel-arsenides, GeAs and SiAs, has been investigated. Electrochemical lithiation demonstrated large initial capacities of over 950 mAh g−1 accompanied by rapid fading over successive cycling in the voltage range 0.01–2 V. Limiting the voltage range to 0.5–2 V achieved more stable cycling, which was attributed to the intercalation process with lower capacities. Ex situ powder X-ray diffraction confirmed complete amorphization of the samples after lithiation, as well as recrystallization of the binary tetrel-arsenide phases after full delithiation in the voltage range 0.5–2 V. Solid-state synthetic methods produce layered phases, in which Si-As or Ge-As layers are separated by Li cations. The first layered compounds in the corresponding ternary systems were discovered, Li0.9Ge2.9As3.1 and Li3Si7As8, which crystallize in the Pbam (No. 55) and P2/m (No. 10) space groups, respectively. Semiconducting layered GeAs and SiAs accommodate the extra charge from Li cations through structural rearrangement in the Si-As or Ge-As layers and eventually by replacement of the tetrel dumbbells with sets of Li atoms. Ge and Si monoarsenides demonstrated high structural flexibility and a mild ability for reversible lithiation.  相似文献   
82.
The growth of Li dendrites hinders the practical application of lithium metal anodes (LMAs). In this work, a hollow nanostructure, based on hierarchical MoS2 coated hollow carbon particles preloaded with sulfur (C@MoS2/S), was designed to modify the LMA. The C@MoS2 hollow nanostructures serve as a good scaffold for repeated Li plating/stripping. More importantly, the encapsulated sulfur could gradually release lithium polysulfides during the Li plating/stripping, acting as an effective additive to promote the formation of a mosaic solid electrolyte interphase layer embedded with crystalline hybrid lithium-based components. These two factors together effectively suppress the growth of Li dendrites. The as-modified LMA shows a high Coulombic efficiency of 98 % over 500 cycles at the current density of 1 mA cm−2. When matched with a LiFePO4 cathode, the assembled full cell displays a highly improved cycle life of 300 cycles, implying the feasibility of the proposed LMA.  相似文献   
83.
The Fe-based transition metal oxides are promising anode candidates for lithium storage considering their high specific capacity, low cost, and environmental compatibility. However, the poor electron/ion conductivity and significant volume stress limit their cycle and rate performances. Furthermore, the phenomena of capacity rise and sudden decay for α-Fe2O3 have appeared in most reports. Here, a uniform micro/nano α-Fe2O3 nanoaggregate conformably enclosed in an ultrathin N-doped carbon network (denoted as M/N-α-Fe2O3@NC) is designed. The M/N porous balls combine the merits of secondary nanoparticles to shorten the Li+ transportation pathways as well as alleviating volume expansion, and primary microballs to stabilize the electrode/electrolyte interface. Furthermore, the ultrathin carbon shell favors fast electron transfer and protects the electrode from electrolyte corrosion. Therefore, the M/N-α-Fe2O3@NC electrode delivers an excellent reversible capacity of 901 mA h g−1 with capacity retention up to 94.0 % after 200 cycles at 0.2 A g−1. Notably, the capacity rise does not happen during cycling. Moreover, the lithium storage mechanism is elucidated by ex situ XRD and HRTEM experiments. It is verified that the reversible phase transformation of α↔γ occurs during the first cycle, whereas only the α-Fe2O3 phase is reversibly transformed during subsequent cycles. This study offers a simple and scalable strategy for the practical application of high-performance Fe2O3 electrodes.  相似文献   
84.
《中国化学》2018,36(2):157-161
The three‐dimensional nanoflower‐like β‐In2S3 composited with carbon nanotubes (CNTs) has been synthesized by a single mode microwave‐assisted hydrothermal technique. The In2S3 and CNTs nanocomposites (In2S3@CNTs) were investigated as the anode materials of lithium batteries (LIBs) and the electromagnetic wave absorption materials. For LIBs applications, the In2S3@CNTs nanocomposite exhibited excellent cycling stability with a high reversible charge capacity of 575 mA⋅h⋅g–1 after 300 cycles at 0.5 A⋅g–1. In addition, the In2S3@CNTs used as electromagnetic wave absorber displayed a maximum reflection loss of –42.75 dB at 11.96 GHz with a thickness of 1.55 mm.  相似文献   
85.
Polyimides are being investigated as alternative, environmentally friendly and safe organic electrode materials for lithium and sodium batteries. However, further improvements need the proper chemical design of these polymers. In this paper, the effect of chemical structure of polyimides on their performance as cathodic materials in lithium batteries was investigated in detail. More in particular, we studied polyimides based on seven different diamine monomers in combination with best performing naphthalenic dianhydride monomer. The first set included the so‐called cardo diamines possessing additional redox‐active carbonyl group with the goal to enhance the theoretical capacity of the polymer. Second, several aromatic diamines including additional functionalities such as cyclic amides, anthrone, or quinolidinium groups were investigated. Finally, aliphatic diamines, containing oxyethylene moieties and thus capable to increase the ionic conductivity of the resulting polymer system, were explored. Among the different polyimides, the “cardo” one based on naphthalenic dianhydride and aromatic aniline phthalein with an additional carbonyl group showed the best results in terms of battery performance. Such polyimide was capable to deliver up to 130 mAhg−1 specific capacity (87% of the theoretical value) at 25 °C and at a current density of 250 mAg−1 during 100 charge/discharge cycles. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2018 , 56, 714–723  相似文献   
86.
The ion exchange membrane can be used as an effective medium of electromigration for the separation of isotopes by the following reasons.  相似文献   
87.
杨成兵  解辉  刘朝 《物理学报》2014,63(20):200508-200508
锂离子进入碳纳米管端口的速度V Li是影响锂离子电池充电性能的重要因素.采用分子动力学模拟方法,研究了直径、温度、电场强度和端口改性官能团四种因子对其影响.运用正交实验方法,分析得出了各因子及其不同水平的影响规律.结果表明,四种因子的影响力度由大到小依次为:电场强度、官能团类型、碳纳米管直径和温度.在本文的模拟条件下,随着电场强度和碳纳米管直径的增大,V Li逐渐增加,且在电场强度下的增幅会更显著;碳纳米管端口官能团分别改性为氢原子(—H),羟基(—OH),氨基(—NH2)以及羧基(—COOH)时,V Li会逐步降低;随着温度的增大,V Li先增加后减小,但整体波动偏幅不大.  相似文献   
88.
89.
Electrospinning, as a novel nontextile filament technology, is an important method to prepare continuous nanofibers and has shown its remarkable advantages, such as a broadly applicable material system, controllable fiber size and structure, and simple process. Electrospun nanofiber membranes prepared by electrospinning have shown promising applications in many fields, such as supercapacitors, lithium‐ion batteries, and sodium‐ion batteries, owing to their large specific surface area and adjustable network pore structure. The principle of electrospinning and key points relevant to its usage in the preparation of high‐performance electrochemical energy storage materials are reviewed herein based on recent publications, particularly focusing on research progress of relative materials. Also, this review describes a distinctive conclusion and perspective on the future challenges and opportunities in electrospun nanomaterials.  相似文献   
90.
The structure of the lithium manganese tartrate precursor and the synthesis mechanism of LiMn2O4 were investigated by FT-IR, NMR, TG/DSC, and XRD in this study. The results of FT-IR and 7Li and 13C NMR measurements revealed that lithium ions bond with carboxylic acid ligands and the O–H stretching modes of tartaric acid. Manganese ion bonds only with carboxylic acid. Lithium and manganese ions were trapped homogeneously on an atomic scale throughout the precursor. Such a structure eliminates the need for long-range diffusion during the formation of lithium manganese oxides. Therefore, spinel LiMn2O4 was synthesized at temperatures as low as 300°C. In this work, the electrochemical properties of Li/LixMn2O4 were studied. It is clear that the discharge curves exhibit two pseudo plateaus as the LiMn2O4 is fired to higher temperatures. The discharge capacity of LiMn2O4 increases from 84 to 117 mAh/g as the calcination temperature increases from 300 to 500°C. The LiMn2O4 powders calcined at low temperatures with a high specific surface area and an average valence of manganese exhibit a better cycle life.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号