首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   11篇
  免费   0篇
化学   8篇
物理学   3篇
  2018年   1篇
  2011年   2篇
  2009年   3篇
  2006年   1篇
  2005年   2篇
  2004年   2篇
排序方式: 共有11条查询结果,搜索用时 663 毫秒
1.
《Current Applied Physics》2018,18(6):752-761
Sb-based alloys offer great potential for photovoltaic and thermophotovoltaic applications. In this paper, we study the performance of AlxGa1-xSb (x = 0, 0.15, and 0.50) single-junction solar cells over a temperature range of 25–250 °C. The dark current-voltage, one-sun current-voltage, and external quantum efficiency measurements were acquired at different temperatures. Correlations between experimental and numerical results are made to draw conclusions about the thermal behavior of the cells. It is shown that, while the bandgaps decrease linearly with temperature leading to the reduction of open-circuit voltages, the short-circuit current densities decrease with non-linear trends. The temperature-dependent dark current densities were extracted by fitting the dark current-voltage curves to single- and double-diode models to give an insight into the effect of intrinsic carrier concentration (ni) on the cell performance. We find that the ni has a significant impact on temperature-dependent cell performance. These findings could lay a groundwork for the future Sb-based photovoltaic systems that operate at high temperatures.  相似文献   
2.
Thermoplastic vulcanizates (TPVs) based on PP and EPDM (the ratio is 5:5) with different crosslinking degrees were prepared using different contents of phenolic resins, and then blended with polyamide 6 (PA6). The results indicated that with an increase in crosslinking degree, the double yielding phenomenon in PA6/TPV blends became more distinct, the yield stress of the first yield point and the yield stress difference of the two yield points decreased; however, the yield strain of the first yield point did not change with the increasing crosslinking degree of the TPV, but the yield strain of the second yield point increased, resulting in a more broadened yield region. The SEM results showed that with an increase in the crosslinking degree of TPV, the diameter of TPV increased in the core layer, and the orientation degree of TPV in the skin and subskin layer deceased, accompanying with a decrease of the ratio of length to diameter (L/D) of the droplets. The morphology evolution of the PA6/TPV blend during the tensile test was also studied, and the results agreed well with the model we proposed. © 2009 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 47: 912–922, 2009  相似文献   
3.
Silane moisture‐cured metallocene‐catalyzed polyethylene (mPE) blend to form a novel thermoplastic vulcanizate (TPV) has been prepared. Metallocene polyethylenes with two different levels of comonomer contents were grafted with various amounts of vinyltriethoxy silane. As a result, tensile strength varies slightly with increasing the levels of silane concentrations, at all test temperatures. Tear strength generally decreases with reduced energy dissipation, at higher degrees of cure. “Threshold” fracture energy is roughly proportional to the reciprocal square root of Young's modulus. By relating tensile strength to tear strength, it was found that the corrected average depth of flaw is in the range of 29.3 ± 7.2 μm, which successfully confirms the extension of Rivlin and Thomas's theory for conventional elastomers to TPVs under an elaborate treatment, due to the limitation of the theory. Cutting strength of mPE TPVs gives an intermediate value when compared with that of crystalline plastics and conventional elastomers, which further signifies the importance of crystalline yielding even in the nanofracture zone of deformation. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 43: 2207–2218, 2005  相似文献   
4.
An overview will be given on thermoplastic vulcanisates (TPVs). Like other thermoplastic elastomers, TPVs combine the elastic and mechanical properties of thermoset cross-linked rubbers with the melt processability of thermoplastics. Emphasis will be on general-purpose TPVs, based on resol-cross-linked EPDM/PP/oil blends. The following recent scientific developments will be discussed in detail: resol cross-linking chemistry, extruder dynamic vulcanisation, TPV morphology, oil distribution, TPV elasticity model and TPV rheology. A series of scientific questions and technological problems, which are challenging future TPV developments, will be put forward at the end.  相似文献   
5.
Two di-azidoformates: 4,4′-isopropylidenediphenyl azidoformate (4,4′DAF), and tri(ethylene glycol)-di(azidoformate) (GDAF), and one di-sulfonyl azide: 1,3-benzenedisulfonyl azide (1,3BDSA), are investigated as cross-linking agents for iPP/EPDM-based dynamically vulcanized thermoplastic vulcanizates (TPVs). Their performance is compared with TPVs cured with peroxide, alone and in combination with a coagent. The di-azides proved already to be effective curing agents for EPDM-rubber in static conditions in a previous study. With respect to the production conditions of the investigated TPVs, the reaction temperature of the sulfonyl azide makes it the most suitable cross-linking agent. Exceptionally good mechanical properties are obtained with very low 1,3BDSA loadings. The results indicate that, in the 1,3BDSA cross-linked TPVs the EPDM-rubber particles size significantly change with the curative concentration.  相似文献   
6.
The preparation, characterization, and properties of the new thermoplastic vulcanizate (TPV)/organoclay nanocomposites are reported in this article. The nanocomposites were prepared by the melt intercalation method. The organoclay was first treated with glycidyl methacrylate, which acts as a swelling agent for organoclays, as well as a grafting agent for TPV (in the presence of dicumyl peroxide) during the melt mixing. The nanocomposite was intercalated, as evidenced by X‐ray diffraction. The tensile modulus of the 5% TPV/organoclay nanocomposite was higher than that of the 20% talc‐filled microcomposite. The storage modulus of the nanocomposite was higher than that of the pristine TPV. The most important observation is obtained from dynamic mechanical analysis, which reveals that the glass‐transition temperature of the polypropylene phase of the nanocomposite increases (as compared to virgin TPV), whereas the ethylene–propylene–diene monomer phase remains almost the same. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 2900–2908, 2004  相似文献   
7.
Peroxide cured PP/metallocene polyethylene (mPE) to form a novel thermoplastic vulcanizate has been prepared. Metallocene polyethylenes with two different levels of comonomer contents were chosen for the investigation. The mixing of mPE (40 wt%) and PP (60 wt%) containing various dosages of peroxide was performed to activate dynamic cure using an internal mixer. Thermal behaviors remain largely unchanged for PP, indicating the dominant effect of cured mPE domains on mechanical properties for the vulcanizates. Tensile strength decreases at first with increasing the levels of peroxide concentrations yet increases again at higher level of peroxide concentrations at all test temperatures. Tear strength generally decreases with reduced energy dissipation and tends to level off at higher degree of cure. The values of cutting strength are comparable with the results for different types of materials and are generally two orders of magnitude smaller than the results from tear measurements. Strength of materials was clearly dominated by the crystalline yielding effect than viscoelastic effect, even in this nano-fracture zone of deformation in the cutting measurement. Morphological observations were also elucidated as well.  相似文献   
8.
In this study, relatively large amounts of polypropylene (PP), ethylene‐propylene‐diene (EPDM), and multi‐walled carbon nanotube (MWCNT) were melt‐mixed with and without DCP. Dynamically vulcanized PP/EPDM (TPV)/MWCNT nanocomposites were prepared by two methods: the MWCNTs were added either before or after the dynamic vulcanization of the blends. The effects of composition, rotor speed, and dynamic vulcanization on their surface resistivity were investigated. The surface resistivity of uncross‐linked PP/EPDM/MWCNT nanocomposites increases with increasing the content of EPDM. At PP/EPDM (70/30 wt%) nanocomposite with 1.5 phr MWCNT, slightly lower surface resistivity is obtained by increasing the rotor speed during mixing. However, for PP/EPDM (50/50 wt%) and PP/EPDM (30/70 wt%) nanocomposites, surface resistivity decreases with increasing the rotor speed from 30 to 60 rpm. But further increase in rotor speed (90 rpm) leads to an increase of surface resistivity. When the MWCNTs were added after the dynamic vulcanization of the blends, the surface resistivity of TPV70/MWCNTnanocomposite is lower than that of uncross‐linked PP/EPDM/MWCNT nanocomposite. However, when the MWCNTs were added before the dynamic vulcanization of the blends, the surface resistivity of TPV70/MWCNT nanocomposite is >1012 Ω/square. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   
9.
微型火焰管中燃烧的研究   总被引:2,自引:0,他引:2  
提出了一种新型的微动力机电系统观念,即微型热光电 TPV(thermo photovoltaic)系统。微型燃烧室是微型TPV系统中最重要的部分之一。为了获得较高的能量转换效率,需要使燃烧器壁面四周处于较高且分布均匀的温度状态。尺寸效应对微型燃烧室中的持续燃烧带来了很大的影响。为了分析微型燃烧器中燃烧的可行性和有关影响因素,在不同工况下进行实验。结果表明,在一定的流量和混合比范围内,可以在微型火焰管内维持稳定的燃烧,高温能够在燃烧室四周均匀分布。  相似文献   
10.
The effect of β phase polypropylene (PP), induced by β-nucleating agent (β-NA), on the fracture behavior in dynamically vulcanized thermoplastic elastomers (TPVs) based on dynamically vulcanized PP/ethylene-propylene-diene rubber (EPDM) blend was studied. Differential Scanning Calorimetry (DSC) and Wide-angle X-ray diffraction (WAXD) were employed to study the melting behavior and crystalline structures, and the results indicated that the β-NA induced β phase of PP effectively in TPVs. With the increasing dosage of the β-NA incorporated in, the content of β phase increased while the total crystallinity of the blend kept constant. The fracture behavior of the TPVs with different β phase content was studied with double edge notched tensile loaded specimens (DENT) using the essential work of fracture (EWF) approach. The specific essential work of fracture (we) increased with the increasing of β phase content, indicating that the presence of β phase could effectively enhance the fracture toughness of TPVs.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号