首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5144篇
  免费   457篇
  国内免费   1174篇
化学   2935篇
晶体学   32篇
力学   1052篇
综合类   70篇
数学   1580篇
物理学   1106篇
  2024年   18篇
  2023年   77篇
  2022年   105篇
  2021年   138篇
  2020年   186篇
  2019年   172篇
  2018年   149篇
  2017年   165篇
  2016年   240篇
  2015年   164篇
  2014年   227篇
  2013年   495篇
  2012年   291篇
  2011年   328篇
  2010年   288篇
  2009年   321篇
  2008年   304篇
  2007年   359篇
  2006年   309篇
  2005年   335篇
  2004年   349篇
  2003年   254篇
  2002年   247篇
  2001年   200篇
  2000年   159篇
  1999年   147篇
  1998年   117篇
  1997年   80篇
  1996年   82篇
  1995年   88篇
  1994年   64篇
  1993年   60篇
  1992年   52篇
  1991年   35篇
  1990年   28篇
  1989年   18篇
  1988年   15篇
  1987年   20篇
  1986年   9篇
  1985年   11篇
  1984年   14篇
  1983年   6篇
  1982年   10篇
  1981年   5篇
  1980年   5篇
  1979年   8篇
  1978年   6篇
  1977年   4篇
  1976年   4篇
  1973年   4篇
排序方式: 共有6775条查询结果,搜索用时 15 毫秒
1.
2.
Given their superior penetration depths, photosensitizers with longer absorption wavelengths present broader application prospects in photodynamic therapy (PDT). Herein, Ag2S quantum dots were discovered, for the first time, to be capable of killing tumor cells through the photodynamic route by near-infrared light irradiation, which means relatively less excitation of the probe compared with traditional photosensitizers absorbing short wavelengths. On modification with polydopamine (PDA), PDA-Ag2S was obtained, which showed outstanding capacity for inducing reactive oxygen species (increased by 1.69 times). With the addition of PDA, Ag2S had more opportunities to react with surrounding O2, which was demonstrated by typical triplet electron spin resonance (ESR) analysis. Furthermore, the PDT effects of Ag2S and PDA-Ag2S achieved at longer wavelengths were almost identical to the effects produced at 660 nm, which was proved by studies in vitro. PDA-Ag2S showed distinctly better therapeutic effects than Ag2S in experiments in vivo, which further validated the enhanced regulatory effect of PDA. Altogether, a new photosensitizer with longer absorption wavelength was developed by using the hitherto-unexplored photodynamic function of Ag2S quantum dots, which extended and enhanced the regulatory effect originating from PDA.  相似文献   
3.
Star copolymers have attracted significant interest due to their different characteristics compared with diblock copolymers, including higher critical micelle concentration, lower viscosity, unique spatial shape, or morphologies. Development of synthetic skills such as anionic polymerization and controlled radical polymerization have made it possible to make diverse architectures of polymers. Depending on the molecular architecture of the copolymer, numerous morphologies are possible, for instance, Archimedean tiling patterns and cylindrical microdomains at symmetric volume fraction for miktoarm star copolymers as well as asymmetric lamellar microdomains for star‐shaped copolymers, which have not been reported for linear block copolymers. In this review, we focus on morphologies and microphase separations of miktoarm (AmBn and ABC miktoarm) star copolymers and star‐shaped [(A‐b‐B)n] copolymers with nonlinear architecture. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2015 , 53, 1–21  相似文献   
4.
5.
An amphiphilic poly(ethylene oxide)‐block‐poly(dimethylsiloxane) (PEO–PDMS) diblock copolymer was used to template a bisphenol A type epoxy resin (ER); nanostructured thermoset blends of ER and PEO–PDMS were prepared with 4,4′‐methylenedianiline (MDA) as the curing agent. The phase behavior, crystallization, hydrogen‐bonding interactions, and nanoscale structures were investigated with differential scanning calorimetry, Fourier transform infrared spectroscopy, transmission electron microscopy, and small‐angle X‐ray scattering. The uncured ER was miscible with the poly(ethylene oxide) block of PEO–PDMS, and the uncured blends were not macroscopically phase‐separated. Macroscopic phase separation took place in the MDA‐cured ER/PEO–PDMS blends containing 60–80 wt % PEO–PDMS diblock copolymer. However, the composition‐dependent nanostructures were formed in the cured blends with 10–50 wt % PEO–PDMS, which did not show macroscopic phase separation. The poly(dimethylsiloxane) microdomains with sizes of 10–20 nm were dispersed in a continuous ER‐rich phase; the average distance between the neighboring microdomains was in the range of 20–50 nm. The miscibility between the cured ER and the poly(ethylene oxide) block of PEO–PDMS was ascribed to the favorable hydrogen‐bonding interaction. © 2006 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 3042–3052, 2006  相似文献   
6.
This is the first part of a series devoted to the study of thermodynamic behavior of large dynamical systems with the use of a family of fully-discrete and conservative models named elementary reversible cellular automata (ERCAs). In this paper, basic properties such as conservation laws and phase space structure are investigated in preparation for the later studies. ERCAs are a family of one-dimensional reversible cellular automata having two Boolean variables on each site. Reflection and Boolean conjugation symmetries divide them into 88 equivalence classes. For each rule, additive conserved quantities written in a certain form are regarded as a kind of energy, if they exist. By the aid of the discreteness of the variables, every ERCA satisfies the Liouville theorem or the preservation of phase space volume. Thus, if an energy exists in the above sense, statistical mechanics of the model can formally be constructed. If a locally defined quantity is conserved, however, it prevents the realization of statistical mechanics. The existence of such a quantity is examined for each class and a number of rules which have at least one energy but no local conservation laws are selected as hopeful candidates for the realization of thermodynamic behavior. In addition, the phase space structure of ERCAs is analyzed by enumerating cycles exactly in the phase space for systems of comparatively small sizes. As a result, it is revealed that a finite ERCA is not ergodic, that is, a large number of orbits coexist on an energy surface. It is argued that this fact does not necessarily mean the failure of thermodynamic behavior on the basis of an analogy with the ergodic nature of infinite systems.  相似文献   
7.
从正交各向异性三维弹性动力学的控制方程出发,在求得四边简支矩形板自由振动频率和位移振型的基础上,构造了受迫振动的位移函数;利用自由振动位移振型的正交性,将控制方程的空间变量和时间变量分离,得到了广义质量、广义力和频率表示的关于时间的2阶常微分方程,从而得到了正交各向异性弹性矩形板在受迫振动下的位移场和应力场.给出了本文方法与薄板理论的算例.  相似文献   
8.
In this paper, Maxwell's equations involving generally nonlinear polarization and field-dependent currents are studied. The main objective is the asymptotic behavior of the solution for t→∞ if no damping term occurs in the equation governing the polarization field.  相似文献   
9.
给出引理解决了方程非振动解与其各阶导数的符号关系,并由此得到了若干判别准则,用于判别三阶线性脉冲微分方程解的振动性与渐近性,举例说明了准则的有效性。本文推广了相关文献的结果。  相似文献   
10.
Rhythmic growth of ring‐banded spherulites in blends of liquid crystalline methoxy‐poly(aryl ether ketone) (M‐PAEK) and poly(aryl ether ether ketone) (PEEK) has been investigated by means of differential scanning calorimetry (DSC), polarized light microscopy (PLM), and scanning electron microscopy (SEM) techniques. The measurements reveal that the formation of the rhythmically grown ring‐banded spherulites in the M‐PAEK/PEEK blends is strongly dependent on the blend composition. In the M‐PAEK‐rich blends, upon cooling, an unusual ring‐banded spherulite is formed, which is ascribed to structural discontinuity caused by a rhythmic radial growth. For the 50:50 M‐PAEK/PEEK blend, ring‐banded spherulites and individual PEEK spherulites coexist in the system. In the blends with PEEK as the predominant component, M‐PAEK is rejected into the boundary of PEEK spherulites. The cooling rate and crystallization temperature have great effect on the phase behavior, especially the ring‐banded spherulite formation in the blends. In addition, the effects of M‐PAEK phase transition rate and phase separation rate on banded spherulite formation is discussed. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 3011–3024, 2007  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号