首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   11篇
  免费   3篇
化学   13篇
物理学   1篇
  2024年   1篇
  2022年   5篇
  2021年   1篇
  2020年   1篇
  2019年   1篇
  2018年   1篇
  2017年   1篇
  2015年   1篇
  2014年   1篇
  2004年   1篇
排序方式: 共有14条查询结果,搜索用时 15 毫秒
1.
To elucidate the physiological role of poly(ADP-ribose) polymerase (PARP), we studied the levels of PARP mRNA and protein during the developmental stages of Sarcophaga peregrina. PARP mRNA expression changed remarkably throughout the developmental stages. The level of PARP mRNA (the molecular ratio of PARP mRNA to the total RNA) was highest in unfertilized eggs and that of PARP protein (the molecular ratio of PARP protein to the total protein of the crude extract) was high in unfertilized and fertilized eggs and in 1st instar larvae. During the embryogenesis period, the levels of PARP mRNA and protein gradually decreased. The levels of PARP mRNA during larval and pupal periods became less than about 5% of that in unfertilized eggs. After the emergence of adult flies, the levels of PARP mRNA and protein increased both in female and male flies. PARP activity normalized with the total amount of protein in the crude extract changed in parallel to the level of PARP protein throughout the developmental stages. The biological significance of the drastic change of mRNA and protein levels of PARP still remains to be clarified.  相似文献   
2.
Novel pyridine-thiazole hybrid molecules were synthesized and subjected to physico-chemical characterization and screening of their cytotoxic action towards a panel of cell lines derived from different types of tumors (carcinomas of colon, breast, and lung, glioblastoma and leukemia), and normal human keratinocytes, for comparison. High antiproliferative activity of the 3-(2-fluorophenyl)-1-[4-methyl-2-(pyridin-2-ylamino)-thiazol-5-yl]-propenone 3 and 4-(2-{1-(2-fluorophenyl)-3-[4-methyl-2-(pyridin-2-ylamino)-thiazol-5-yl]-3-oxopropylsulfanyl}-acetylamino)-benzoic acid ethyl ester 4 was revealed. The IC50 of the compound 3 in HL-60 cells of the acute human promyelocytic leukemia was 0.57 µM, while in the pseudo-normal human cell lines, the IC50 of this compound was >50 µM, which suggests that the compounds 3 and 4 might be perspective anticancer agents. The detected selectivity of the derivatives 3 and 4 for cancer cell lines inspired us to study the mechanisms of their cytotoxic action. It was shown that preincubation of tumor cells with Fluzaparib (inhibitor of PARP1) reduced the cytotoxic activity of the derivatives 3 and 4 by more than twice. The ability of these compounds to affect DNA nativity and cause changes in nucleus morphology allows for the suggestion that the mechanism of action of the novel pyridine-thiazole derivatives might be related to inducing the genetic instability in tumor cells.  相似文献   
3.
Ovarian cancer (OC) is the single most lethal gynecologic malignancy. Cannabis sativa is used to treat various medical conditions, and is cytotoxic to a variety of cancer types. We sought to examine the effectiveness of different combinations of cannabis compounds against OC. Cytotoxic activity was determined by XTT assay on HTB75 and HTB161 cell lines. Apoptosis was determined by flow cytometry. Gene expression was determined by quantitative PCR and protein localization by confocal microscopy. The two most active fractions, F5 and F7, from a high Δ9–tetrahydrocannabinol (THC) cannabis strain extract, and their standard mix (SM), showed cytotoxic activity against OC cells and induced cell apoptosis. The most effective phytocannabinoid combination was THC+cannabichromene (CBC)+cannabigerol (CBG). These fractions acted in synergy with niraparib, a PARP inhibitor, and were ~50-fold more cytotoxic to OC cells than to normal keratinocytes. The F7 and/or niraparib treatments altered Wnt pathway-related gene expression, epithelial–mesenchymal transition (EMT) phenotype and β-catenin cellular localization. The niraparib+F7 treatment was also effective on an OC patient’s cells. Given the fact that combinations of cannabis compounds and niraparib act in synergy and alter the Wnt signaling pathway, these phytocannabinoids should be examined as effective OC treatments in further pre-clinical studies and clinical trials.  相似文献   
4.
Apart from its vital function as a redox cofactor, nicotinamide adenine dinucleotide ( NAD+ ) has emerged as a crucial substrate for NAD+ -consuming enzymes, including poly(ADP-ribosyl)transferase 1 (PARP1) and CD38/CD157. Their association with severe diseases, such as cancer, Alzheimer's disease, and depressions, necessitates the development of new analytical tools based on traceable NAD+ surrogates. Here, the synthesis, photophysics and biochemical utilization of an emissive, thieno[3,4-d]pyrimidine-based NAD+ surrogate, termed NthAD+ , are described. Its preparation was accomplished by enzymatic conversion of synthetic th ATP by nicotinamide mononucleotide adenylyltransferase 1 (NMNAT1). The new NAD+ analogue possesses useful photophysical features including redshifted absorption and emission maxima as well as a relatively high quantum yield. Serving as a versatile substrate, NthAD+ was reduced by alcohol dehydrogenase (ADH) to NthADH and afforded thADP-ribose ( th ADPr ) upon hydrolysis by NAD+ -nucleosidase (NADase). Furthermore, NthAD+ was engaged in cholera toxin A (CTA)-catalyzed mono(thADP-ribosyl)ation, but was found incapable in promoting PARP1-mediated poly(thADP-ribosyl)ation. Due to its high photophysical responsiveness, NthAD+ is suited for spectroscopic real-time monitoring. Intriguingly, and as an N7-lacking NAD+ surrogate, the thieno-based cofactor showed reduced compatibility (i.e., functional similarity compared to native NAD+ ) relative to its isothiazolo-based analogue. The distinct tolerance, displayed by diverse NAD+ producing and consuming enzymes, suggests unique biological recognition features and dependency on the purine N7 moiety, which is found to be of importance, if not essential, for PARP1-mediated reactions.  相似文献   
5.
A sensitive and selective RP‐HPLC method has been developed and validated for the quantification of a highly potent poly ADP ribose polymerase inhibitor talazoparib (TZP) in rat plasma. Chromatographic separation was performed with isocratic elution method. Absorbance for TZP was measured with a UV detector (SPD‐20A UV–vis) at a λmax of 227 nm. Protein precipitation was used to extract the drug from plasma samples using methanol–acetonitrile (65:35) as the precipitating solvent. The method proved to be sensitive and reproducible over a 100–2000 ng/mL linearity range with a lower limit of quantification (LLQC) of 100 ng/mL. TZP recovery was found to be >85%. Following analytical method development and validation, it was successfully employed to determine the plasma protein binding of TZP. TZP has a high level of protein binding in rat plasma (95.76 ± 0.38%) as determined by dialysis method.  相似文献   
6.
In this study,we designed and synthesized a series of phthalazinone acridine derivatives as dual PARP and Topo inhibitors.MTT assays indicated that most of the compounds significantly inhibited multiple cancer cells proliferation.In addition,all the compounds displayed Topo Ⅱ inhibition activity at 10 mol/L,and also possessed good PARP-1 inhibitory activities.Subsequent mechanistic studies showed that compound 9 a induced remarkable apoptosis and caused prominent S cell cycle arrest in HCT116 cells.Our study suggested that 9 a inhibiting Topo and PARP concurrently can be a potential lead compound for cancer therapy.  相似文献   
7.
Colorectal cancer is one of the most common cancers worldwide, and it is also one of the major causes of mortality from cancer. Chemotherapy drugs are generally limited due to various complications, as well as the development of resistance and recurrence. The in silico docking investigation involved exploration of protein or nucleotide, 3D structural modeling, molecular docking, and binding energy calculation. Protein-protein interactions are significant to many biological processes, and their disruption is a leading cause of disease. The use of small molecules to modulate them is gaining popularity, but protein interfaces usually lack specific cavities for processing small molecules. MMP-2, PARP, iNOS, Chk1, proteins were used in the molecular docking analysis of kaempferitrin and 5-flurouracil. The compound kaempferitrin had the highest binding energy scores with most of the target proteins, according to molecular docking results. The findings suggest it could be used to develop new drugs for cancer therapy.  相似文献   
8.
The enzyme PARP1 is an attractive target for cancer therapy, as it is involved in DNA repair processes. Several PARP1 inhibitors have been approved for clinical treatments. However, the rapid outbreak of resistance is seriously threatening the efficacy of these compounds, and alternative strategies are required to selectively regulate PARP1 activity. A noncanonical G-quadruplex-forming sequence within the PARP1 promoter was recently identified. In this study, we explore the interaction of known G-quadruplex binders with the G-quadruplex structure found in the PARP gene promoter region. The results obtained by NMR, CD, and fluorescence titration, also confirmed by molecular modeling studies, demonstrate a variety of different binding modes with small stabilization of the G-quadruplex sequence located at the PARP1 promoter. Surprisingly, only pyridostatin produces a strong stabilization of the G-quadruplex-forming sequence. This evidence makes the identification of a proper (3+1) stabilizing ligand a challenging goal for further investigation.  相似文献   
9.
《Mendeleev Communications》2022,32(6):735-738
Here we propose an over-the-hood docking method that compensates for systematic errors in the docking force fields. This method explicitly estimates the interaction energy of the ligand with the protein surface and uses it as a baseline to estimate the actual binding energy in the active site. It improves the accuracy of virtual screening in the LeadFinder package by up to 48%.  相似文献   
10.
We have developed a palladium-catalyzed N-arylation of the biologically interesting, but synthetically rather challenging 2-arylaminobenzothiazoles bearing multiple functionalities. This protocol was successfully used to readily synthesize our initial PARP14 inhibitor followed by a limited structural optimization. A more potent PARP14 inhibitor with an IC50 value of 1.69 μM was identified, and the interaction was ascertained by the X-ray co-crystal structure of the catalytic domain of PARP14 in complex with compound 8.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号