首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   678篇
  免费   35篇
  国内免费   215篇
化学   720篇
晶体学   12篇
力学   5篇
数学   42篇
物理学   149篇
  2023年   4篇
  2022年   11篇
  2021年   13篇
  2020年   11篇
  2019年   7篇
  2018年   6篇
  2017年   14篇
  2016年   27篇
  2015年   31篇
  2014年   36篇
  2013年   47篇
  2012年   77篇
  2011年   62篇
  2010年   65篇
  2009年   74篇
  2008年   58篇
  2007年   60篇
  2006年   43篇
  2005年   57篇
  2004年   48篇
  2003年   30篇
  2002年   31篇
  2001年   15篇
  2000年   13篇
  1999年   15篇
  1998年   2篇
  1997年   4篇
  1996年   2篇
  1995年   5篇
  1994年   1篇
  1993年   1篇
  1992年   1篇
  1991年   4篇
  1990年   1篇
  1989年   1篇
  1988年   12篇
  1987年   15篇
  1986年   15篇
  1985年   1篇
  1984年   1篇
  1981年   2篇
  1979年   1篇
  1978年   3篇
  1976年   1篇
排序方式: 共有928条查询结果,搜索用时 15 毫秒
641.
《Nuclear Physics B》1998,524(3):695-741
We discuss the construction of the physical configuration space for Yang-Mills quantum mechanics and Yang-Mills theory on a cylinder. We explicitly eliminate the redundant degrees of freedom by either fixing a gauge or introducing gauge invariant variables. Both methods are shown to be equivalent if the Gribov problem is treated properly and the necessary boundary identifications on the Gribov horizon are performed. In addition, we analyze the significance of non-generic configurations and clarify the relation between the Gribov problem and coordinate singularities.  相似文献   
642.
《Surface science》1988,202(3):L568-L576
We present the first study of the effect of an alkali metal overlayer on the adsorption of an organic molecule, methylchloride, on a Si(100)2 × 1 surface. In strong contrast to the behavior of molecular oxygen or nitrogen which were found to react with the silicon substrate, there was no significant interaction between methylchloride and silicon, rather, the formation of alkali-chlorine bonds was observed. Core level and valence band spectroscopies using synchrotron radiation were used to study these systems. Sodium was found to exhibit the strongest interaction with mehtylchloride which was dissociated, while the effects produced by K and Cs were weaker.  相似文献   
643.
Poly(vinyl pyrrolidone) (PVP)-capped CdS nanoparticles were prepared with CS2 as the sulfur source through the hydrothermal process. The obtained nanoparticles were characterized by X-ray diffraction, transmission electron microscopic, ultraviolet–visible and fluorescence spectroscopy. The capped CdS nanoparticles showed remarkable stability and significantly enhanced luminescence property compared with that of the noncapped ones. We attributed this observation to the surface passivation of the CdS nanoparticles by the PVP molecules.  相似文献   
644.
A stereoselective solid surface has been created by the self-assembly of a chiral osmium complex, λ-[Os(phen)3](ClO4)2 (phen=1,10-phenanthroline), onto a single layered clay film deposited on an indium tin oxide (ITO) electrode; the OsII–OsIII redox couple mediates the electrochemical oxidation of chiral 1,1-2-binaphthol in a stereoselective way or the S-isomer is oxidized at 1.4 times higher rate than the R-isomer.  相似文献   
645.
646.
647.
648.
A novel complex material was fabricated by three steps. In the first step, gold nanoparticle (Aunano) was prepared with the method of chemistry and dialysis. In the second step, 4‐aminothiophenol (AT) was encapsulated in the cavity of β‐cyclodextrin and formed inclusion complex, cyclodextrin/4‐aminothiophenol (CD/AT). And then inclusion complex was adsorbed to the surface of Aunano based on the bond of Au‐S interaction. In the last step, a complex material, cyclodextrin/poly(4‐aminothiophenol)‐Au nanoparticles (CD/PAT‐Aunano) was obtained by the polymerizing in the acid solution initiated by chlorauric acid. The CD/PAT‐Aunano has spherical nanostructure with the average diameter of 55 nm. Glucose oxidase (GOx) was anchored with this complex material and direct electrochemistry of GOx was achieved. A couple of stable and well‐defined redox peaks were observed with the formal potential (E0′) of ‐0.488 V (vs. SCE) in a pH 6.98 buffer solution. The GOx modified electrode also exhibited an excellent electrocatalytic activity to the reduction of glucose, a linearity range for determination of glucose is from 0.25 mM to 16.0 mM with a detection limit of 0.09 mM (S/N = 3). This protocol had potential application to fabricate the third‐generation biosensor.  相似文献   
649.
A uric acid (UA) electrochemical biosensor based on the Cu‐Au alloy nanoparticles (NPs) and uricase was developed. The electrodeposition technique of Cu‐Au alloy NPs was selected to be a convenient potentiostatic method at –0.8 V in a single solution containing both Au(III) and Cu2+. Cyclic voltammetry and scanning electron microscopy proved the successful deposition of Cu‐Au alloy NPs. EIS demonstrated the good conductivity of Cu‐Au alloy NPs. The enzyme was immobilized on the surface of Cu‐Au alloy NPs modified electrode by casting with chitosan solution. The ultimate biosensor showed linear amperometric response towards UA in the concentration range of 3.0 to 26.0 μM with a detection limit of 0.8 μM. The main feature of the biosensor was its short response time, which was attributed to the good conductivity of Cu‐Au alloy NPs. Furthermore, the biosensor could avoid the interference of ascorbic acid and oxygen.  相似文献   
650.
1,3-Bis(4-aminophenoxy)benzene (TPER) and poly(amic acid) based on TPER and pyromellitic dianhydride (PMDA) were synthesized. After imidization of the poly(amic acid), polyimide based on TPER and PMDA was obtained. The melting process and the specific heat capacity (C p) of TPER were examined by DSC and microcalorimetry, respectively. The melting enthalpy, the melting entropy, and the C p for TPER were obtained. The enthalpy change, the entropy change, and the Gibbs free energy change for TPER were obtained within 283 and 353 K. The thermal decomposition reaction mechanism of the polyimide is classified from the TG–DTG experimental data, and the thermokinetic parameters of the thermal decomposition reaction are E a = 296.87 kJ mol?1and log (A/s?1) = 14.41.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号