首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2762篇
  免费   351篇
  国内免费   498篇
化学   1640篇
晶体学   36篇
力学   40篇
综合类   70篇
数学   777篇
物理学   1048篇
  2024年   7篇
  2023年   96篇
  2022年   111篇
  2021年   123篇
  2020年   130篇
  2019年   95篇
  2018年   141篇
  2017年   136篇
  2016年   173篇
  2015年   177篇
  2014年   190篇
  2013年   215篇
  2012年   240篇
  2011年   258篇
  2010年   169篇
  2009年   209篇
  2008年   151篇
  2007年   160篇
  2006年   133篇
  2005年   72篇
  2004年   71篇
  2003年   69篇
  2002年   59篇
  2001年   44篇
  2000年   27篇
  1999年   60篇
  1998年   35篇
  1997年   15篇
  1996年   13篇
  1995年   10篇
  1994年   9篇
  1993年   8篇
  1992年   5篇
  1991年   3篇
  1990年   10篇
  1989年   6篇
  1988年   24篇
  1987年   50篇
  1986年   65篇
  1985年   6篇
  1984年   6篇
  1983年   2篇
  1982年   3篇
  1981年   3篇
  1980年   4篇
  1978年   3篇
  1977年   3篇
  1976年   4篇
  1959年   5篇
  1936年   3篇
排序方式: 共有3611条查询结果,搜索用时 46 毫秒
71.
Molecular design to improve catalyst performance is significant but challenging. In enzymes, residue groups that are close to reaction centers play critical roles in regulating activities. Using this bioinspired strategy, three water-soluble polymers were designed with appending Co porphyrins and different side-chain groups to mimic enzyme reaction centers and activity-controlling residue groups, respectively. With these polymers, high hydrogen evolution efficiency was achieved in neutral aqueous media for electro- (turnover frequency >2.3×104 s−1) and photocatalysis (turnover number >2.7×104). Porphyrin units are surrounded and protected by polymer chains, and more importantly, the activity can be tuned with different side-chain groups. Therefore, instead of revising molecular structures that is difficult from both design and synthesis points of view, polymers can be used to improve molecular solubility and stability and simultaneously regulate activity by using side-chain groups.  相似文献   
72.
A detailed theoretical study on the reaction mechanisms for the formations of H2O2 + 3O2 from the self-reaction of HO2 radicals under the effect of NH3, H3N···H2O, and H2SO4 catalysts was performed using the CCSD(T)/CBS//M06-2X/aug-cc-pVTZ method. The rate constant was computed using canonical variational transition state theory (CVT) with small curvature tunneling (SCT). Our results indicate that NH3-, H3N···H2O-, and H2SO4-catalyzed reactions could proceed through both one-step and stepwise routes. Calculated rate constants show that the catalyzed routes in the presence of the three catalysts all prefer stepwise pathways. Compared to the catalytic efficiency of H2O, the efficiencies of NH3, H3N···H2O, and H2SO4 are much lower due to their smaller relative concentrations. The present results have provided a definitive example of how basic and acidic catalysts influence the atmospheric reaction of HO2 + HO2 → H2O2 + 3O2. These results further encourage one to consider the effects of basic and acidic catalysts on the related atmospheric reactions. Thus, the present investigation should have broad implications in the gas-phase reactions of the atmosphere.  相似文献   
73.
Borate is considered one of the most important additives for improving the fire-resistance of combustible polymers because of its smoke suppression, low toxicity, and good thermal stability. However, the size of prepared borate is usually in the micrometer range, which makes it difficult to disperse in a polymer matrix, thus hindering its use as fire-retardant material. The preparation and application of borate nanomaterial as flame retardant is considered an effective method. However, the preparation of barium borate nanomaterials as flame retardant has not been reported. In this paper, nanosheets and nanoribbons with different sizes for a new barium borate BaO·4B2O3·5H2O are prepared by hydrothermal method, and characterized by X-ray diffraction (XRD), Fourier transform infrared spectrum (FT-IR), thermogravimetric analysis-differential scanning calorimetry (TG-DSC), and scanning electron microscope (SEM). The flame-retardant properties of polypropylene (PP)/BaO·4B2O3·5H2O composites are investigated by thermogravimetric analysis (TG), differential scanning calorimetry (DSC) thermal analysis methods and limited oxygen index (LOI) method. Considering the near TG mass losses and the near LOI values for PP with 10% prepared BaO·4B2O3·5H2O nanosheet and nanoribbon, their flame-retardant properties need to be further evaluated by non-isothermal decomposition kinetic method. The apparent activation energy for this decomposition reaction was obtained from the slope by plotting ln(β/Tp2) against 1/Tp according to Kissinger's model. With the reduction of TG mass loss, increased heat absorption in DSC under N2 atmosphere, increased apparent activation energy Ea for the thermal decomposition of PP/BaO·4B2O3·5H2O composite as well as increased LOI value, the flame-retardant performance of prepared BaO·4B2O3·5H2O samples with PP gradually improved from bulk to nanoribbon to nanosheet. This can be attributed to the decrease in the size of BaO·4B2O3·5H2O samples because the smaller sample size leads to improved dispersion and increased contact area with the polymer. The flame-retardant mechanism is discussed by analyzing the after-flame chars of the PP/BaO·4B2O3·5H2O composite in SEM images, which show that the char layer is more compact and continuous for the PP/BaO·4B2O3·5H2O nanosheet composite. The influence of loading BaO·4B2O3·5H2O nanomaterials on the mechanical properties of PP is also tested using a universal material testing machine, in which the PP/BaO·4B2O3·5H2O nanosheet composite has higher tensile strength. The PP/BaO·4B2O3·5H2O nanosheet composite has the best flame-retardant and mechanical properties, which is promising to be developed for the application as flame-retardant material.  相似文献   
74.
功率密度高、倍率性能优异和循环性能好等特性使得超级电容器在储能领域显示了巨大的应用前景。尽管二维层状材料剥离形成的纳米片层不仅可为电化学反应提供独特的纳米级反应空间,而且由其组装的层状纳米电极材料具有化学和结构上的氧化还原可逆性及纳米片层水平方向上离子或电子快速传输通道。但是,纳米片层组装电极材料在纳米片层垂直方向上离子或电子传输存在障碍,对于超级电容器功率密度和能量密度的提高及实现快速能量储存非常不利。因此,如何通过改善离子或电子的快速传输,实现超级电容器大功率密度下的高能量密度是超级电容器电极材料发展的方向之一。本文主要综述了二维层状材料剥离成纳米片层,纳米片层孔洞化策略及组装孔洞化材料在超级电容器电极材料中的应用。纳米层孔洞化技术是改善层状电极材料在纳米片层垂直方向离子或电子传输的有效手段,为实现高比电容下的高倍率性能超级电容器电极材料制备提供了方法学。最后,对开发大功率密度下的高能量密度超级电容器电极材料提出了展望。  相似文献   
75.
《中国化学快报》2020,31(10):2698-2704
Multiple pollutants including pathogenic microorganism contaminations and emerging organic contaminations (EOCs) have shown a growing threat to the environment, especially the natural waters. However, the control and removal of pathogenic microorganism contaminations and EOCs have been greatly limited since limited knowledge of their environmental behaviors. Thus, a novel and efficient photocatalyst Ag2O/BiOBr heterojunction was synthesized and used for removal of multiple pollutants including Escherichia coli (E. coli), Staphylococcus aureus (S. aureus), tetracycline and acetaminophen under visible light. The results showed that there were valid electron transfer pathways between BiOBr and Ag2O, the main electron transfer direction was the BiOBr to Ag2O. Photo-generated electrons were stored in Ag2O and thus separation efficiency between holes and photo-generated electrons was obviously enhanced. Active oxygen species were highly produced and eventually end up with the high efficiency of removal of multiple pollutants. For Ag2O/BiOBr with Ag2O content at 3% (the best performance) under visible light, log decrease of E. coli was 7.16 (removal efficiency was 100%) in 120 min, log decrease of S. aureus was 7.23 (removal efficiency was 100%) in 160 min, C/C0 of tetracycline was 0.06 in 180 min, C/C0 of acetaminophen was 0.17 in 180 min. This work could provide a promising candidate in the actual contaminated natural waters for cleaning multiple pollutants.  相似文献   
76.
陈香李  刘凯强  房喻 《化学进展》2020,32(7):861-872
作为一类典型软物质材料,近年来分子凝胶在生物医学、柔性电子设备、晶体控制生长、水体净化,以及3D打印材料、微纳米材料和高能量密度材料制备等领域表现出巨大的应用潜力,受到人们越来越多的关注。如何提高分子凝胶结构调控效率,拓展分子凝胶功能,促进分子凝胶实际应用已经成为新阶段分子凝胶研究的主要内容。本文结合本课题组的研究工作,从动态共价键调控分子凝胶力学性能、分子凝胶促进高品质有机晶体制备和高性能多孔高分子材料的分子凝胶(凝胶乳液)软膜板制备三个方面阐述分子凝胶的结构调控和功能化应用研究。在此基础上,简要展望分子凝胶研究的发展趋势。  相似文献   
77.
In the fields of biocomputing and biomolecular, DNA molecules are applicable to be regarded as data of logical computing platform that uses elaborate logic gates to perform a variety of tasks. Graphene oxide (GO) is a type of novel nanomaterial, which brings new research focus to materials science and biosensors due to its special selectivity and excellent quenching ability. G-quadruplex as a unique DNA structure stimulates the intelligent application of DNA assembly on the strength of its exceptional binding activity. In this paper, we report a universal logic device assisted with GO and G-quadruplex under an enzyme-free condition. Integrated with the quenching ability of GO to the TAMRA (fluorophore, Carboxytetramethylrhodamine) and the enhancement of fluorescence intensity produced by the peculiar binding of G-quadruplex to the NMM (N-methylmesoporphyrin IX), a series of basic binary logic gates (AND. OR. INHIBIT. XOR) have been designed and verified through biological experiments. Given the modularity and programmability of this strategy, two advanced logic gates (half adder and half subtractor) were realized on the basis of the same work platform. The fluorescence signals generated from different input combinations possessed satisfactory results, which provided proof of feasibility. We believe that the proposed universal logical platform that operates at the nanoscale is expected to be utilized for future applications in molecular computing as well as disease diagnosis.  相似文献   
78.
《Surface science》1990,239(3):L543-L547
Potential-dependent sequences of surface infrared spectra have been obtained during the voltammetric electrooxidation of solution carbon monoxide on ordered Au(210), in acidic, neutral, and alkaline aqueous media. Under optimal catalytic conditions, only a reactive form of adsorbed CO is detected, yielding a CO stretching frequency (vCO) at ∼ 2100–2115 cm−1. The occurrence of reaction inhibition is accompanied by the displacement of this adsorbate by a lower vCO form, located at ∼1900–2000 cm−1, its appearance being favored by increasing surface exposure time and more negative dosing potentials. The mechanistic implications of such combined real-time infrared/voltammetric results are noted.  相似文献   
79.
In this paper we describe a decision support system for capacity planning of container terminals. Typical elements of a container terminal are a quay, cranes,a stack yard and trucks for transport of containers between the quay and the stack yard and vice versa. For each of these elements we can devise models to describe the performance. The decision support system combined a heuristic analysis of these models to a global model to study the interaction between the elements of a container terminal.  相似文献   
80.
《Physics letters. A》1988,128(5):302-306
When an axially channeled electron emits one photon, its transverse kinetic energy decreases by roughly the same ratio as the longitudinal energy. If this ratio is not small compared to 1, the electron after emission spends a significantly larger fraction of its time in the strong field region than before emission, and the probability of emitting new phonons increases accordingly. This makes the cascade of emissions self-accelerating, and can explain the anomalously large energy radiated by 150 GeV electrons channeled in germanium in a recent experiment. Multiple scattering is important in moderating this mechanism.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号