首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   210篇
  免费   4篇
化学   109篇
晶体学   1篇
力学   15篇
数学   24篇
物理学   65篇
  2023年   9篇
  2022年   3篇
  2021年   1篇
  2020年   7篇
  2019年   2篇
  2018年   8篇
  2017年   3篇
  2016年   7篇
  2015年   9篇
  2014年   6篇
  2013年   16篇
  2012年   7篇
  2011年   3篇
  2010年   5篇
  2009年   4篇
  2008年   1篇
  2007年   9篇
  2006年   9篇
  2005年   8篇
  2004年   2篇
  2003年   4篇
  2002年   2篇
  2001年   10篇
  1999年   5篇
  1998年   3篇
  1997年   6篇
  1996年   4篇
  1995年   1篇
  1994年   3篇
  1992年   1篇
  1991年   3篇
  1990年   4篇
  1988年   11篇
  1987年   10篇
  1986年   18篇
  1984年   2篇
  1983年   2篇
  1981年   3篇
  1979年   2篇
  1977年   1篇
排序方式: 共有214条查询结果,搜索用时 31 毫秒
151.
《印度化学会志》2022,99(12):100701
In the present work, two new 8-hydroxyquinoline derivatives namely, 5-(((2-hydroxybenzylidene)amino)methyl) 8-hydroxyquinoline [HBMQ] and 5-(((4-chlorobenzylidene)amino)methyl) 8-hydroxyquinoline [CBMQ] were synthesized and investigated as corrosion inhibitors against the dissolution of carbon steel (C38 steel) in 1 M HCl. These compounds were obtained with high yield, and their structures were characterized by nuclear magnetic resonance spectroscopy (NMR) and elemental analysis. Gravimetric, electrochemical impedance spectroscopy (EIS), potentiodynamic polarization (PDP), and surface morphology analyses utilizing scanning electron microscopy (SEM) with energy dispersive spectroscopy (EDS) were used to quantify inhibitory performance. The adsorption process of inhibitory compounds was then demonstrated using quantum mechanics approaches such as Density Functional Theory (DFT) and Molecular Dynamic Simulation (MD). Based on EIS results, the investigated derivatives effectively inhibit the degradation of C38 steel over the entire concentration range with a maximum efficiency of 91.9% and 88.0% for [CBMQ] and [HBMQ], respectively, at 10?3 M. In addition, the PDP studies revealed that [HBMQ] and [CBMQ] compounds acted according to a mixed-type mechanism. Moreover, the adsorption mechanism follows the Langmuir isotherm model. The quantum theoretical study by DFT and MD simulation confirmed the experimental results.  相似文献   
152.
Mycotoxins pose a grave global threat to human life and health by contaminating food and feed and cause enormous losses in healthcare and trading. Trace mycotoxin concentrations and diverse matrices in food make identification and measurement challenges, necessitating highly specific and sensitive detection methods. Electrochemical (EC) sensors are characterized by simple operation, outstanding sensitivity, low cost, and facile miniaturization and have become a promising strategy for addressing specificity and sensitivity in detection. Recent studies on EC sensors for mycotoxin detection for food safety are reviewed here. First, we summarize the fabrication of EC sensors and techniques with enhanced specificity and sensitivity. Then, we review state-of-the-art EC sensors for detecting major mycotoxins. Challenges and opportunities for this technology are further discussed. Finally, in-depth information is provided on using EC sensors to detect mycotoxins for food safety, as well as the development of EC sensors for academic study and practical application.  相似文献   
153.
The study was aimed to identify cytotoxic leads from Abutilon indicum leaves for treating glioblastoma. The petroleum ether extract, methanol extract (AIM), chloroform and ethyl acetate sub-fractions (AIM-C and AIM-E, respectively) prepared from AIM were tested for cytotoxicity on U87MG human glioblastoma cells using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. These extracts exhibited considerable activity (IC50 values of 42.6–64.5 μg/mL). The most active AIM-C fraction was repeatedly chromatographed to yield four known compounds, methyl trans-p-coumarate (1), methyl caffeate (2), syringic acid (3) and pinellic acid (4). Cell viability assay of 14 against U87MG cells indicated 2 as most active (IC50 value of 8.2 μg/mL), whereas the other three compounds were much less active. Interestingly, compounds 14 were non-toxic towards normal human cells (HEK-293). The content of 2 in AIM-C was estimated as 3% by HPLC. Hence, presence of some more active substances besides methyl caffeate (2) in AIM-C is anticipated.  相似文献   
154.
The phonon-assisted photon-drag effect in a two-dimensional semiconductor quantum well structure is investigated. By making use of second-order perturbation theory and the classical Boltzmann equation we found, by considering both intrasubband and the intersubband electronic transitions, that the electric field generated by the photon-drag effect in a typical GaAs–AlGaAs two-dimensional system is enhanced by almost one order of magnitude as compared with that of a bulk system. Moreover, the results can qualitatively account for the observed absorption spectra due to intersubband electronic transitions occurring in GaAs quantum wells.  相似文献   
155.
We present new experimental evidence that further confirms that a combination of electrochemical reactions and diffusion–convection (ERDC) mass transfer accounts for the potential oscillations that appear under conditions of transport limited current. A typical example is given for the reduction of Fe(CN)63− in alkaline solution accompanying periodic hydrogen evolution. No potential oscillations occur by simply replacing the hydrogen evolution with IO3 reduction as the second current carrier. That replacement removes only the convection mass transfer induced by the hydrogen evolution, and retains the negative differential resistance (NDR) from the Frumkin repulsive effect. The key role of hydrogen evolution is thus to restore the Fe(CN)63− surface concentration after its depleting to zero by diffusion-limited reduction, rather than purely a second current carrier. Therefore, the other mechanism, which emphasizes the NDR from the Frumkin interaction due to electrostatic repulsion, is excluded because it does not have a direct connection with the oscillations. Moreover, a crossing cycle in cyclic voltammograms is a more convincible criterion for this category of electrochemical oscillators than the negative impedance.  相似文献   
156.
The variations of mass concentrations of PM2.5, PM10, SO2, NO2, CO, and O3 in 31 Chinese provincial capital cities were analyzed based on data from 286 monitoring sites obtained between March 22, 2013 and March 31, 2014. By comparing the pollutant concentrations over this length of time, the characteristics of the monthly variations of mass concentrations of air pollutants were determined. We used the Pearson correlation coefficient to establish the relationship between PM2.5, PM10, and the gas pollutants. The results revealed significant differences in the concentration levels of air pollutants and in the variations between the different cities. The Pearson correlation coefficients between PMs and NO2 and SO2 were either high or moderate (PM2.5 with NO2: r = 0.256–0.688, mean r = 0.498; PM10 with NO2: r = 0.169–0.713, mean r = 0.493; PM2.5 with SO2: r = 0.232–0.693, mean r = 0.449; PM10 with SO2: r = 0.131–0.669, mean r = 0.403). The correlation between PMs and CO was diverse (PM2.5: r = 0.156–0.721, mean r = 0.437; PM10: r = 0.06–0.67, mean r = 0.380). The correlation between PMs and O3 was either weak or uncorrelated (PM2.5: r = −0.35 to 0.089, mean r = −0.164; PM10: r = −0.279 to 0.078, mean r = −0.127), except in Haikou (PM2.5: r = 0.500; PM10: r = 0.509).  相似文献   
157.
In this study, computational fluid dynamics and the laminar flow of the non-Newtonian fluid have been numerically studied. The cooling fluid includes water and 0.5 wt% Carboxy methyl cellulose (CMC) making the non-Newtonian fluid. In order to make the best of non-Newtonian nanofluid in this simulation, solid nanoparticles of Aluminum Oxide have been added to the non-Newtonian fluid in volume fractions of 0–2% with diameters of 25, 45 and 100 nm. The supposed microchannel is rectangular and two-dimensional in Cartesian coordination. The power law has been used to speculate the dynamic viscosity of the cooling nanofluid. The field of numerical solution is simulated in the Reynolds number range of 5 < Re < 300. A constant heat flux of 10,000 W/m2 is exercised on the lower walls of the studied geometry. Further, the effect of triangular ribs with angle of attacks of 30°, 45° and 60° is studied on flow parameters and heat transfer due to the fluid flow. The results show that an increase in the volume fraction of nanoparticles as well as the use for nanoparticles with smaller diameters lead to greater heat transfer. Among all the studied forms, the triangular rib from with an angle of attack 30° has the biggest Nusselt number and the smallest pressure drop along the microchannel. Also, an increase in the angle of attack and as a result of a sudden contact between the fluid and the ribs and also a reduction in the coflowing length (length of the rib) cause a cut in heat transfer by the fluid in farther parts from the solid wall (tip of the rib).  相似文献   
158.
159.
160.
Good infrared spectral regions to retrieve accurately the vertical column amount of ozone from ground observations are proposed. Their selection was based on studies of the influence of spectroscopic (frequencies, halfwidths, intensities) as well as geophysical parameters (volume mixing ratios, temperature profiles) with a particular attention for temperature. The results, obtained in three different spectral regions, with a realistic Tprofile are very consistent.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号