首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   630篇
  免费   87篇
  国内免费   118篇
化学   312篇
晶体学   20篇
力学   72篇
数学   118篇
物理学   313篇
  2024年   1篇
  2023年   23篇
  2022年   37篇
  2021年   27篇
  2020年   18篇
  2019年   13篇
  2018年   13篇
  2017年   23篇
  2016年   19篇
  2015年   26篇
  2014年   57篇
  2013年   66篇
  2012年   79篇
  2011年   74篇
  2010年   52篇
  2009年   61篇
  2008年   37篇
  2007年   29篇
  2006年   30篇
  2005年   11篇
  2004年   7篇
  2003年   10篇
  2002年   10篇
  2001年   16篇
  2000年   4篇
  1999年   13篇
  1998年   11篇
  1997年   4篇
  1996年   6篇
  1995年   3篇
  1994年   4篇
  1993年   3篇
  1992年   5篇
  1991年   3篇
  1990年   4篇
  1989年   1篇
  1988年   11篇
  1987年   15篇
  1986年   9篇
排序方式: 共有835条查询结果,搜索用时 15 毫秒
11.
曾毅  任永生  马文会  陈辉  詹曙  曹静 《化学进展》2022,34(4):926-949
太阳能作为一种绿色可再生能源受到了广泛关注,而杂质去除是从冶金级硅中获得太阳能级硅所需的纯化过程,对硅基太阳能电池的制备至关重要。冶金法制备太阳能级多晶硅新工艺技术由于其能耗低、成本低和污染少等优点,成为研究开发的热点,但如何有效地去除硼是我们面临的最严峻的挑战之一。本文综述了硼的热力学和动力学性质(溶解度、扩散率、扩散系数、传质系数和活度系数)以及近年来除硼的相关课题研究(吹气、炉渣处理、等离子体处理、酸浸和溶剂精炼)。研究发现,溶剂精炼是一种很有前途的获取高纯硅的方法,硅的富集率以及硼的去除率均可达到90%以上,而添加剂能够加强硼化物的形成和析出来改进除硼工艺,且后续几乎可被完全消除,不会对精炼硅造成污染,这将更加有效除硼并增加工艺实用性。最后本文对几种除硼工艺进行了比较分析,并对冶金法的应用前景进行了展望。  相似文献   
12.
The quasi-ferrite model is proposed and an appropriate PBE exchange functional with the spin density functional theory(SDFT) is selected for the calculation of the relation between magnetic moment and residual stress in ferrite using a quantum mechanics code. The relationship between ferrite magnetism and the carbon content is determined,and then a ferrite interstitial solid solution(ISS) model in a low carbon concentration state is replaced with an α- Fe model in the case of majority magnetic calculation. The band structure of the loaded-Fe is compared with that of the unloaded α-Fe. The comparison shows that the energy of Fe atomic 3d orbital changes a little,while the energy of electron orbital of iron core below 3d almost keeps unchanged. The relationship between the magnetic moment and the stress appears intermittent due to the Bragg total reflection. The change in the magnetic moment due to lattice mismatch is much larger than that caused by mechanical loading.  相似文献   
13.
The effect of two alklpyridinium hydrosulfate based ionic liquids(ILs)including N-butylpyridinium hydrogen sulfate(BpyHSO4)and N-hexylpyridinium hydrogen sulfate(HpyHSO4)as additives on the nucleation and growth of copper from acidic sulfate bath was investigated using cyclic voltammetry,chronoamperometric and scanning electron microscopy techniques.Results from cyclic voltammetry indicated that the two studied additives had a blocking effect on copper electrodeposition process and this effect initiated by HpyHSO4was more pronounced in comparison to BpyHSO4.Dimensionless chronoamperometric current-time transients for the electrodeposition of copper from the bath free of additives were in good accord with the theoretical transients for the limiting case of instantaneous three-dimensional nucleation with diffusion-controlled growth of the nuclei.However,the instantaneous nucleation mechanism observed in the additive-free bath was changed to a more progressive one when additives were present in the bath.Surface morphology analysis indicated that alklpyridinium hydrosulfate ILs can induce the formation of leveled and finer grained deposits by the adsorption of additive at the first stages of deposition process,leading to decrease of the nucleation and growth rate of nuclei.  相似文献   
14.
A series of mixed oxides Ce1 ? x Fe x O2 was prepared by a hydrothermal method. XRD and Raman spectra were measured to study the structure of the prepared materials. The temperature-programmed reduction was undertaken to estimate reducibility of the oxides. Syngas generation from methane using these materials as oxygen carriers/catalysts via a chemical-looping procedure was investigated in detail. This procedure includes catalytic oxidation and decomposition of methane to produce H2-rich gas at the first step followed by the production of the CO-rich gas by oxidizing the carbon deposited on deactivated catalysts. The results showed that all iron ions were incorporated into the ceria lattice with the formation of oxygen vacancies in the Ce0.9Fe0.1O2 sample, while isolated Fe2O3 particles were distributed on the surface of the Ce0.8Fe0.2O2 sample. TPR measurements and the analysis of the two-step chemical-looping reactions indicated a strong interaction between the Ce and Fe species which accounts for an increased activity of the mixed oxides in the syngas generation compared to that of individual oxides. Among the several samples, the Ce0.8Fe0.2O2 catalyst showed the highest activity for methane partial oxidation due to the synergetic effects caused by the interaction of surface iron entities and Ce-Fe solid solution. In addition, selective oxidation of carbon by oxygen to CO can also be found over this material since gaseous products are formed at the carbon oxidation step with the selectivity to CO reaching 91.2%. Evidence is presented that syngas can be feasibly produced from methane with high selectivity via the chemical-looping procedure over the CeO2-Fe2O3 mixed oxides.  相似文献   
15.
采用线性扫描伏安法研究了Lewis 酸性AlCl3-BMIC (BMIC: 1-butyl-3-methylimidazolium chloride)离子液体中铝电极的溶解. 铝电极在阳极极化时出现了钝化现象, 钝化是由于在铝电极表面形成了固体AlCl3钝化膜造成的. 铝的电化学溶解过程可以依次分为三个区: 电化学控制区、过渡区和钝化区. 在电化学控制区, 铝的电化学溶解速率随着电位的正移而逐渐增加; 在过渡区, 由于电极表面AlCl4-和Al2Cl7-浓度发生改变而析出固体AlCl3使得铝电化学溶解速率随着电位的正移而逐渐减小; 当钝化膜形成之后, 铝的电化学溶解速率不再随着电位的正移而发生改变, 铝溶解进入钝化区. 增加搅拌、升高温度、降低离子液体AlCl3摩尔分数都可以增加铝溶解阳极极限电流密度.  相似文献   
16.
作为一种过渡金属氧化物,锰氧化物以其多晶型、储/释氧能力强、蕴含丰富氧物种、结构缺陷可控等优点被广泛应用于苯系物的热催化氧化。其中,具有众多特性的氧空位能有效促进苯系物的完全催化氧化,因而成为各界研究的焦点。我们综述了常见的氧空位构建方法及表征技术,并总结了在苯系物催化氧化过程中,锰氧化物中氧空位的几种重要作用机制对催化活性和抗水性能的积极影响。最后文章对氧空位构建新方法、形成机理、具体过程及其在锰氧化物热催化氧化苯系物领域中的应用进行了总结和展望。  相似文献   
17.
商业化锂离子电池石墨负极和锂盐过渡金属氧化物正极材料的储锂容量都已接近各自的理论值,探索下一代高能量密度电极材料是解决现阶段锂离子电池容量限制的关键。近年来,新型金属草酸基负极材料,借助其在金属离子电池中多元化储能机制诱发的较高储能效应在碱金属离子电池绿色储能材料领域备受关注。本文就金属草酸基材料在锂、钠、钾金属离子电池方面的最新研究进行了综述,着重介绍了材料的晶型结构、多元化储能机制及储能过程中的动力学特征,简单阐述了材料在电化学储能中存在的问题,分析了金属草酸基负极材料在形貌晶型控制、界面碳复合改性和金属元素掺杂方面的改性策略。最后,预测了金属草酸基负极材料在碱金属离子电池体系的发展方向。  相似文献   
18.
In the process of nitric acid dissolving precious metals, a large amount of NOx exhaust gas will be produced. This research aims at the development of a new method for the removal of low-concentration nitrogen oxides from metallurgical flue gas. In this process, a printed three-dimensional large-flow microstructure reactor and urea solution are used for the removal of NOx, which facilitates the greater efficiency of denitrification(≥94%). Urea plays an important role in the redox of NO2, such as NO2 is reduced to N2 in solution. Both the gas and the liquid phase simultaneously react in the microchannels of the microfluidic reactor. The channels allow the proper mixing of urea and NaClO2 during the flow which efficiently removes NOx at low concentrations. The optimum condition for high denitration efficiency is outlined: the urea solution with 3%,temperature of the mixed solution is 293.15 K, gas–liquid flow mass ratio is 1:1, pH value (8.0–10.0), CNaClO2 = 0.02 mol/L. This work successfully describes the use of a microfluidic reactor to enhance and maintain the denitration efficiency. This work describes how to successfully enhance and maintain the denitration efficiency while using a printed three-dimensional large-flow microstructure reactor.  相似文献   
19.
Non-thermal plasma (NTP) and combined plasma-MnO2 catalytic (CPMC) air cleaners were tested for removal of low-concentration benzene in air. Both air cleaners were made of stainless steel needle matrix plate and used DC corona discharger. The effects of discharge power and relative humidity (RH) on benzene removal efficiency were investigated in a closed chamber. The intermediate products produced in purification processes were analyzed using gas chromatography-mass spectrometer (GC-MS). The concentrations of discharge byproducts and CO2 selectivity produced in both processes were also compared. It was found that the benzene removal efficiency increased with discharge power in both systems; With the increase of RH in air, benzene removal efficiency firstly increased and then decreased in NTP while it gradually decreased in CPMC. For a fixed discharge power of 9 W and RH of 20% in CPMC, the conversion of benzene increased from 82.9% to 89.6%, the CO2 selectivity increased from 38% to 80%, the concentration of O3 decreased from 25.3 ppm to 1.3 ppm, and NO2 formation decreased from 234 ppm to 25.7 ppm, compared with NTP.  相似文献   
20.
Effects of ultrasonic on desulfurization ratio from bauxite water slurry (BWS) electrolysis in NaOH solution were examined under constant current. The results indicated that ultrasonic improved the desulfurization ratio at high temperatures because of the diffusion and transfer of oxygen gas in electrolyte. However, due to the increase in oxygen gas emission, ultrasonic could not improve the desulfurization ratio obviously at low temperatures. Additionally, the particle size of bauxite became fine in the presence of ultrasonic, indicating that the mass transfer of FeS2 phase was improved. According to the polarization curves, the current density increased in the presence of ultrasonic, indicating that the mass transfer of liquid phase was improved. The apparent activation energy (AAE) of electrode reaction revealed that ultrasonic did not change the pathway of water electrolysis. However, ultrasonic changed the pathway of BWS electrolysis, converting indirect oxidation into direct oxidation. The AAE of BWS electrolysis in the presence of ultrasonic was higher than that in the absence of ultrasonic. And the low AAEs (less than 20 kJ/mol) clearly indicated the diffusion control during BWS electrolysis reaction.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号