首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   39112篇
  免费   4874篇
  国内免费   4569篇
化学   16697篇
晶体学   355篇
力学   1497篇
综合类   379篇
数学   2831篇
物理学   9395篇
综合类   17401篇
  2024年   153篇
  2023年   563篇
  2022年   1052篇
  2021年   1124篇
  2020年   1171篇
  2019年   1069篇
  2018年   984篇
  2017年   986篇
  2016年   1307篇
  2015年   1634篇
  2014年   2064篇
  2013年   2457篇
  2012年   2878篇
  2011年   3102篇
  2010年   2500篇
  2009年   2596篇
  2008年   2811篇
  2007年   2570篇
  2006年   2342篇
  2005年   2026篇
  2004年   1653篇
  2003年   1412篇
  2002年   1629篇
  2001年   1438篇
  2000年   1132篇
  1999年   1007篇
  1998年   646篇
  1997年   620篇
  1996年   614篇
  1995年   523篇
  1994年   482篇
  1993年   359篇
  1992年   288篇
  1991年   288篇
  1990年   244篇
  1989年   205篇
  1988年   178篇
  1987年   134篇
  1986年   85篇
  1985年   46篇
  1984年   33篇
  1983年   32篇
  1982年   28篇
  1981年   22篇
  1980年   17篇
  1979年   9篇
  1977年   4篇
  1976年   8篇
  1975年   8篇
  1959年   5篇
排序方式: 共有10000条查询结果,搜索用时 0 毫秒
61.
There have been remarkable progresses in manipulating heterogeneous catalysts' nanostructures in the past decade. The concept of single atom alloy (SAA) was firstly proposed in 2012 when researchers successfully stabilized single Pd atoms on the Cu(111) surface. However, earlier work in 2009, which focused on replacing one Au atom with a Pd atom in thiolate protected Au25 nanoclusters, could also be considered as the pioneer work of single atom alloy. Both kinds of single atom alloys exhibited the potential of maximum utilization of scarce elements and attractive catalytic performances. The well‐defined structures of SAA catalysts make accurate modeling possible, which further realizes the rational design of single atom alloy catalysts. In this review, we summarize the research trajectory of single atom alloys as well as recent achievements in this field. We also introduce several commonly adopted characterization methods for SAA catalysts such as scanning tunneling microscopy (STM), temperature programmed reaction (TPR), extended X‐ray absorption fine structure (EXAFS) spectra, matrix assisted laser desorption/ionization mass spectrum (MALDI‐MS) and differential pulse voltammetry (DPV). Through discussing recent progresses in SAA catalysts, we propose that future researches in this filed should be focused on exploring new kinds of metal nanocrystals and controlling the nanostructure of SAA even more precisely.  相似文献   
62.
63.
64.
65.
Photoelectron angular distributions have been measured for the three-photon resonant one-photon ionization, (3+1), of Xe via the 7s[1 1/2]0 1 and 8s[1 1/2]0 1 states. The results are in good agreement with the theoretical predictions of Tang and Lambropoulos [13] for the 8s[1 1/2]0 1, but not for the 7s[1 1/2]0 1 state. Furthermore, the results are compared to those which have been obtained by Blazewicz et al. [1] for the three-photon resonant two-photon ionization, (3+2), of Xe via the 6s[1 1/2]0 1 state.  相似文献   
66.
67.
Isomeric structures and energies of three kinds of lithofluorosilylenoids, R2SiLiF (R = NH2, OH, F) were studied using theab initio molecular orbital theory. The calculations show that thermal stability of the three-membered ring structures of these three kinds of silylenoids decreases in the order of substituents NH2 > OH > F because of the conjugation between NH2, OH or F and Si atom. The interaction of substituents R with Li atom makes R2SiLiF have a structure with two Li-A-Si-F (A = N, O, F) four-membered rings, which is the most stable of the isomers of each of three kinds of silylenoids and whose stability decreases in the order of substituents F > OH > NH2. Inductive effect of substituents influences the thermal stability of the linear structure of silylenoids.  相似文献   
68.
高效液相色谱手性流动相添加剂法拆分酪氨酸甲酯对映体   总被引:2,自引:0,他引:2  
分别将β-环糊精、羟丙基-β-环糊精作为手性流动相添加剂,研究了酪氨酸甲酯对映体在反相HPLC系统中的拆分,考察了流动相种类、pH和手性流动相添加剂浓度对手性拆分的影响,建立了β-环糊精手性流动相添加剂法拆分酪氨酸甲酯对映体的方法。  相似文献   
69.
The 1205 classical isomers of fullerene C58, as well as one quasi-fullerene C58 isomer with a heptagonal ring (labeled as Cs:hept) have been investigated by the quantum chemical methods PM3, HCTH/3-21G, and B3LYP/6-31G(d). Isomer C3v:0001, which has the lowest number of adjacent pentagons, is predicted to be the most stable isomer, but the quasi-fullerene isomer Cs:hept is only 2.50 kcal mol-1 higher in energy. Systematic investigations of the electronic properties of C3v:0001 and Cs:hept find that the C3v:0001 isomer has high vertical electron affinity (3.19 eV). The nucleus-independent chemical shifts (NICS) value at the center of Cs:hept (-5.1 ppm) is more negative than that of C60 (-2.8 ppm). The NICS value at the center of the heptagonal ring in Cs:hept (-2.5 ppm) indicates weakly aromatic character. In contrast, the C58(6-) and C58(8-) ions of the C3v:0001 and Cs:hept geometries possess large aromatic character, with NICS values between -14.0 and -26.2 ppm. To clarify the thermodynamic stabilities of C58 isomers at different temperatures, the entropy contributions are taken into account on the basis of the Gibbs energy at the B3LYP/6-31G(d) level. The C3v:0001 isomer prevails in a wide range of temperatures, and the Cs:hept isomer is also an important component around 2800 K. The IR spectra of C58 isomers are simulated to facilitate experimental identification of different isomers. In addition, the electronic spectra and the second-order hyperpolarizabilities are predicted by ZINDO and the sum-over-states model. The static second-order hyperpolarizability of the C3v:0001 isomer is 96.5 % larger than that of C60, and its second-order hyperpolarizabilities at external field frequencies are at least nine times larger than those of C60.  相似文献   
70.
为研究配筋率对钢筋混凝土桥梁延性抗震性能的影响,并在不同设防烈度对主筋配筋率的合理取值进行细分。以钢筋混凝土桥梁为研究对象,通过拟静力模型试验与有限元数值分析的方法,研究竖向钢筋(主筋)配筋率对桥墩延性的影响,提出典型桥墩的多级性能水平量化指标;并探究在氯离子侵蚀的恶劣环境下,不同配筋率对桥梁抗震性能所带来的影响,从而对氯离子侵蚀环境下的震区中小跨径桥梁墩柱配筋率取值范围提供参考建议。结果表明:考虑氯离子侵蚀作用下的恢复力模型能够较好地反映刚度的退化特性,墩柱的最佳配筋率取值范围为1.11%~2.72%;当加速度为0.3g(g为重力加速度)时,仅从配筋率的角度已无法满足墩柱的损伤指标,建议采用减隔震体系进行抗震设计,如采用延性体系时配筋率不得小于2.64%。研究结果可为中小跨径连续桥梁抗震设计提供参考。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号