Journal of Radioanalytical and Nuclear Chemistry - The concentrations of 238U, 226Ra, 232Th and 40K and gross α, β were measured in soils and sediments around a uranium tailings reservoir... 相似文献
Journal of Radioanalytical and Nuclear Chemistry - Controlling heat accumulation is one of the major challenges for block materials synthesizing via bulk polymerization. In the paper, cross-linked... 相似文献
Journal of Thermal Analysis and Calorimetry - Nowadays, the stability and heat transfer properties of nanofluids have been extensively studied. However, for the practical application, the dynamic... 相似文献
The adsorption characteristics of phosphorylated Aspergillus niger (AN-P) for uranium(VI) were studied in this work. The AN-P was successfully prepared by the reaction of Aspergillus niger with phosphorus pentoxide in ice-bath under the catalysis of methanesulphonic acid. AN-P was characterized by FT-IR and SEM–EDS. The effects of pH, contact time, initial U(VI) ions concentration, adsorbent dosage and temperature on the adsorption of U(VI) by AN-P were investigated. The isotherm and kinetic data were accurately described by the Langmuir and pseudo-second-order models, respectively. The calculated thermodynamic parameters indicated that the adsorption of U(VI) by AN-P was an spontaneous and endothermic process. This indicated that the AN-P composite is a promising adsorbent for efficient removal of U(VI) from radioactive wastewater.
Three new metal complexes, namely: [Mn(AIDB)Cl2]·DMF (1), [Zn(AIDB)Br2]·CH3OH (2) and [Co(AIDB)Cl2]·CH3OH (3) having a ligand bis(benzimidazol-2-ylmethyl)allylamine (AIDB), have been synthesized in high yields and characterized by elemental analyses, molar conductivities, IR, UV–Vis spectra and single-crystal X-ray diffraction. The structural analysis revealed that all the three complexes 1–3 have five-coordinated trigonal bipyramid geometry where the degree of distorting is 1>3>2. In vitro antioxidant activity assay demonstrates that the complexes 1 and 3 display high scavenging activity against hydroxyl (OH·) and superoxide (O2−·) radicals.