首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   62篇
  免费   1篇
化学   16篇
力学   1篇
数学   5篇
物理学   12篇
综合类   29篇
  2020年   2篇
  2013年   3篇
  2012年   1篇
  2011年   1篇
  2009年   5篇
  2008年   1篇
  2007年   1篇
  2006年   1篇
  2005年   2篇
  2003年   3篇
  2002年   1篇
  2001年   1篇
  2000年   3篇
  1999年   4篇
  1998年   2篇
  1996年   1篇
  1995年   3篇
  1992年   1篇
  1991年   2篇
  1990年   1篇
  1989年   1篇
  1988年   1篇
  1987年   5篇
  1985年   3篇
  1984年   4篇
  1983年   2篇
  1982年   3篇
  1981年   1篇
  1980年   2篇
  1979年   1篇
  1945年   1篇
排序方式: 共有63条查询结果,搜索用时 171 毫秒
11.
V L Lew  R Y Tsien  C Miner  R M Bookchin 《Nature》1982,298(5873):478-481
The physiological actions of Ca2+ as a trigger and second messenger depend on the maintenance of large inward resting Ca2+ gradients across the cell plasma membrane. An ATP-fuelled Ca-pump, originally discovered and still best characterized in human red cells, is now believed to mediate resting Ca2+ extrusion in most animal cells. However, even in red cells, the truly physiological pump-leak turnover rate and cytoplasmic free Ca2+ level are unknown. Previous estimates were only very imprecise upper limits because normal intact red cells have a minute total pool of exchangeable Ca of less than 1 mumol 1 cells; Ca fluxes could not be measured without artificially increasing that pool with ionophores or disrupting the membrane to incorporate Ca buffers. Both procedures leave the membrane considerably leakier than in intact cells. Here, we have increased the exchangeable Ca pool by non-disruptively loading a Ca-chelator into intact cells, using intracellular hydrolysis of a membrane-permeant ester. The trapped chelator made the free cytoplasmic calcium concentration, [Ca2+]i, an easily defined function of directly measurable total cell Ca. We were then able to establish the physiological steady-state [Ca2+]i and pump-leak turnover rate of fresh cells suspended in their own plasma. If [Ca2+]i was lowered below the normal resting level, the Ca pump rate decreased according to the square of [Ca2+]i, and the inward Ca leak increased. The increase in leak did not develop if the cells were depleted of ATP and ADP.  相似文献   
12.
A Malgaroli  R W Tsien 《Nature》1992,357(6374):134-139
Glutamate application at synapses between hippocampal neurons in culture produces long-term potentiation of the frequency of spontaneous miniature synaptic currents, together with long-term potentiation of evoked synaptic currents. The mini frequency potentiation is initiated postsynaptically and requires activity of NMDA receptors. Although the frequency of unitary quantal responses increases strongly, their amplitude remains little changed with potentiation. Tests of postsynaptic responsiveness rule out recruitment of latent glutamate receptor clusters. Thus, postsynaptic induction can lead to enhancement of presynaptic transmitter release. The sustained potentiation of mini frequency is expressed even in the absence of Ca2+ entry into presynaptic terminals.  相似文献   
13.
14.
BACKGROUND: Small-molecule inhibitors that can target individual kinases are powerful tools for use in signal transduction research. It is difficult to find such compounds because of the enormous number of protein kinases and the highly conserved nature of their catalytic domains. Recently, a novel, potent, Src family selective tyrosine kinase inhibitor was reported (PP1). Here, we study the structural basis for this inhibitor's specificity for Src family kinases. RESULTS: A single residue corresponding to Ile338 (v-Src numbering; Thr338 in c-Src) in Src family tyrosine kinases largely controls PP1's ability to inhibit protein kinases. Mutation of Ile338 to a larger residue such as methionine or phenylalanine in v-Src makes this inhibitor less potent. Conversely, mutation of Ile338 to alanine or glycine increases PP1's potency. PP1 can inhibit Ser/Thr kinases if the residue corresponding to Ile338 in v-Src is mutated to glycine. We have accurately predicted several non-Src family kinases that are moderately (IC(50) approximately 1 microM) inhibited by PP1, including c-Abl and the MAP kinase p38. CONCLUSIONS: Our mutagenesis studies of the ATP-binding site in both tyrosine kinases and Ser/Thr kinases explain why PP1 is a specific inhibitor of Src family tyrosine kinases. Determination of the structural basis of inhibitor specificity will aid in the design of more potent and more selective protein kinase inhibitors. The ability to desensitize a particular kinase to PP1 inhibition of residue 338 or conversely to sensitize a kinase to PP1 inhibition by mutation should provide a useful basis for chemical genetic studies of kinase signal transduction.  相似文献   
15.
Persistent protein kinase activity underlying long-term potentiation   总被引:41,自引:0,他引:41  
R Malinow  D V Madison  R W Tsien 《Nature》1988,335(6193):820-824
Long-term potentiation (LTP) of synaptic transmission in the hippocampus is a much-studied example of synaptic plasticity. Although the role of N-methyl-D-aspartate (NMDA) receptors in the induction of LTP is well established, the nature of the persistent signal underlying this synaptic enhancement is unclear. Involvement of protein phosphorylation in LTP has been widely proposed, with protein kinase C (PKC) and calcium-calmodulin kinase type II (CaMKII) as leading candidates. Here we test whether the persistent signal in LTP is an enduring phosphoester bond, a long-lived kinase activator, or a constitutively active protein kinase by using H-7, which inhibits activated protein kinases and sphingosine, which competes with activators of PKC (ref. 17) and CaMKII (ref. 18). H-7 suppressed established LTP, indicating that the synaptic potentiation is sustained by persistent protein kinase activity rather than a stably phosphorylated substrate. In contrast, sphingosine did not inhibit established LTP, although it was effective when applied before tetanic stimulation. This suggests that persistent kinase activity is not maintained by a long-lived activator, but is effectively constitutive. Surprisingly, the H-7 block of LTP was reversible; evidently, the kinase directly underlying LTP remains activated even though its catalytic activity is interrupted indicating that such kinase activity does not sustain itself simply through continual autophosphorylation (see refs 9, 13, 15).  相似文献   
16.
钱临照 《物理学报》1945,5(1):67-78
An interference pattern of two systems of fringes has been obtained by vising two radiations in a Hilger prism interferometer A system of white bands with equal spacing which are always parallel to the refracting, edge of the prisin is the result of the intersection of the two systems of fringes. The white bauds travel as one of the reflecting mirror in the interferometer makes a parallel displacement. Let d be the displacement of mirror when the white bauds travel one spacing, we have 1/λ2-1/λ1=1/2d. Two yellow doublets in sodium and mercury lamps were used. The values found for 1/λ2-1/λ1 were 17.22cm-1 and 63.29cm-1 respectively. A comparison of this method with the visibility corve by Michelson interfero-ineter has been discussed.  相似文献   
17.
C D Benham  R W Tsien 《Nature》1987,328(6127):275-278
Receptor-operated Ca2+ entry has been proposed as a signalling mechanism in many cells. Receptor-operated Ca2+ channels (ROCs) were first postulated in smooth muscle by Bolton, van Breemen and Somlyo and Somlyo, but recordings of directly ligand-gated Ca2+ current are lacking. Here we describe receptor-operated Ca2+ current evoked in arterial smooth muscle cells by ATP, a sympathetic neurotransmitter. ATP activates channels with approximately 3:1 selectivity for Ca2+ over Na+ at near-physiological concentrations and with a unitary conductance of approximately 5 pS in 110 mM Ca2+ or Ba2+. The channels can be opened even at very negative potentials and resist inhibition by cadmium or nifedipine, unlike voltage-gated Ca2+ channels; they are not blocked by Mg2+, unlike NMDA (N-methyl-D-aspartate)-activated channels; they are directly activated by ligand, without involvement of readily diffusible second messengers, unlike cation channels in neutrophils and T lymphocytes. Thus, the ATP-activated channels provide a distinct mechanism for excitatory synaptic current and Ca2+ entry in smooth muscle.  相似文献   
18.
Two new fluorescent sensors for Zn(2+) that utilize fluorescein as a reporting group, Zinpyr-1 and Zinpyr-2, have been synthesized and characterized. Zinpyr-1 is prepared in one step via a Mannich reaction, and Zinpyr-2 is obtained in a multistep synthesis that utilizes 4',5'-fluorescein dicarboxaldehyde as a key intermediate. Both Zinpyr sensors have excitation and emission wavelengths in the visible range ( approximately 500 nm), dissociation constants (K(d1)) for Zn(2+) of <1 nM, quantum yields approaching unity (Phi = approximately 0.9), and cell permeability, making them well-suited for intracellular applications. A 3- to 5-fold fluorescent enhancement is observed under simulated physiological conditions corresponding to the binding of the Zn(2+) cation to the sensor, which inhibits a photoinduced electron transfer (PET) quenching pathway. The X-ray crystal structure of a 2:1 Zn(2+):Zinpyr-1 complex has also been solved, and is the first structurally characterized example of a complex of fluorescein substituted with metal binding ligands.  相似文献   
19.
MG and SRB aptamers, which are short RNA sequences originally selected only for binding to malachite green or sulforhodamine B, can greatly enhance the fluorescence of normally nonfluorescent triphenylmethane dyes. MG aptamer enhances the quantum yields of malachite green (MG) and a novel rigidized derivative, indolinyl malachite green (IMG) by >2000-fold. SRB aptamer brightens patent blue V and VF by >90-fold. These enhancements are specific because MG aptamer has no effect on patent blue dyes and SRB aptamer has little or no effect on MG and IMG. Such sequence-specific fluorescence labeling of short RNA motifs is a first step toward genetically encodable fusion tags for imaging selected RNAs in vitro and in cells.  相似文献   
20.
Visualizing the mechanical activation of Src   总被引:1,自引:0,他引:1  
Wang Y  Botvinick EL  Zhao Y  Berns MW  Usami S  Tsien RY  Chien S 《Nature》2005,434(7036):1040-1045
The mechanical environment crucially influences many cell functions. However, it remains largely mysterious how mechanical stimuli are transmitted into biochemical signals. Src is known to regulate the integrin-cytoskeleton interaction, which is essential for the transduction of mechanical stimuli. Using fluorescent resonance energy transfer (FRET), here we develop a genetically encoded Src reporter that enables the imaging and quantification of spatio-temporal activation of Src in live cells. We introduced a local mechanical stimulation to human umbilical vein endothelial cells (HUVECs) by applying laser-tweezer traction on fibronectin-coated beads adhering to the cells. Using the Src reporter, we observed a rapid distal Src activation and a slower directional wave propagation of Src activation along the plasma membrane. This wave propagated away from the stimulation site with a speed (mean +/- s.e.m.) of 18.1 +/- 1.7 nm s(-1). This force-induced directional and long-range activation of Src was abolished by the disruption of actin filaments or microtubules. Our reporter has thus made it possible to monitor mechanotransduction in live cells with spatio-temporal characterization. We find that the transmission of mechanically induced Src activation is a dynamic process that directs signals via the cytoskeleton to spatial destinations.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号