首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   56276篇
  免费   6981篇
  国内免费   5806篇
化学   26804篇
晶体学   491篇
力学   2151篇
综合类   369篇
数学   4119篇
物理学   14140篇
综合类   20989篇
  2024年   237篇
  2023年   904篇
  2022年   1604篇
  2021年   1739篇
  2020年   1771篇
  2019年   1657篇
  2018年   1525篇
  2017年   1454篇
  2016年   2002篇
  2015年   2360篇
  2014年   3063篇
  2013年   3611篇
  2012年   4193篇
  2011年   4464篇
  2010年   3446篇
  2009年   3397篇
  2008年   3821篇
  2007年   3503篇
  2006年   3135篇
  2005年   2750篇
  2004年   2153篇
  2003年   1742篇
  2002年   1835篇
  2001年   1583篇
  2000年   1373篇
  1999年   1442篇
  1998年   1098篇
  1997年   1057篇
  1996年   971篇
  1995年   855篇
  1994年   842篇
  1993年   598篇
  1992年   529篇
  1991年   503篇
  1990年   432篇
  1989年   385篇
  1988年   289篇
  1987年   211篇
  1986年   140篇
  1985年   81篇
  1984年   54篇
  1983年   39篇
  1982年   42篇
  1981年   25篇
  1980年   34篇
  1979年   12篇
  1976年   16篇
  1975年   15篇
  1974年   10篇
  1973年   9篇
排序方式: 共有10000条查询结果,搜索用时 9 毫秒
81.
82.
通过“新甜二号”块根三生构造的形成及发育过程观察看出:甜菜块根三生构造的形成始于一对真叶期,从二对真叶到块根糖分增长期前期是块根三生维管束环的主要形成时期。块根内对三生维管束环上的三生维管束束数随块根三生维管束环数的增加而增加,二者之间里显著的直线相关。而且块根内的三生维管束环数及环上的束数都具有极限性。块根最外2—3环上的三生维管束束数虽多,但成熟的较少。块根内各环间距随三生维管束环数的增加而呈动态变化,环间距增长最快在叶丛繁茂中期到块根糖分增长期中后期。生育后期,根内以第三环间距最大,而且根内各环间距的大小与环数之间呈Y=ae~(bx)·x的函数关系。  相似文献   
83.
The structural variations of silica gels heated at different temperatures have been firstly studied using Nd(3+) as a probe by photoacoustic spectroscopy (PAS), together with IR spectroscopy and thermal analysis. With increasing temperature, the f-f transitions of Nd(3+) show a red shift and the PA intensities increase. The PA branching vector of the transitions from ground state to 4G(5/2)+(2)G(7/2), which are hypersensitive transitions, increase and the others decrease or change little. These indicate that the covalency of the bond that Nd(3+) forms increases and the symmetry around Nd(3+) decreases, which reflects the structural variations of silica gels.  相似文献   
84.
There have been remarkable progresses in manipulating heterogeneous catalysts' nanostructures in the past decade. The concept of single atom alloy (SAA) was firstly proposed in 2012 when researchers successfully stabilized single Pd atoms on the Cu(111) surface. However, earlier work in 2009, which focused on replacing one Au atom with a Pd atom in thiolate protected Au25 nanoclusters, could also be considered as the pioneer work of single atom alloy. Both kinds of single atom alloys exhibited the potential of maximum utilization of scarce elements and attractive catalytic performances. The well‐defined structures of SAA catalysts make accurate modeling possible, which further realizes the rational design of single atom alloy catalysts. In this review, we summarize the research trajectory of single atom alloys as well as recent achievements in this field. We also introduce several commonly adopted characterization methods for SAA catalysts such as scanning tunneling microscopy (STM), temperature programmed reaction (TPR), extended X‐ray absorption fine structure (EXAFS) spectra, matrix assisted laser desorption/ionization mass spectrum (MALDI‐MS) and differential pulse voltammetry (DPV). Through discussing recent progresses in SAA catalysts, we propose that future researches in this filed should be focused on exploring new kinds of metal nanocrystals and controlling the nanostructure of SAA even more precisely.  相似文献   
85.
86.
87.
88.
89.
Dysregulation of proteolytic processing of the amyloid precursor protein (APP) contributes to the pathogenesis of Alzheimer's Disease, and the Group VIA phospholipase A(2) (iPLA(2)beta) is the dominant PLA(2) enzyme in the central nervous system and is subject to regulatory proteolytic processing. We have identified novel N-terminal variants of iPLA(2)beta and previously unrecognized proteolysis sites in APP constructs with a C-terminal 6-myc tag by automated identification of signature peptides in LC/MS/MS analyses of proteolytic digests. We have developed a Signature-Discovery (SD) program to characterize protein isoforms by identifying signature peptides that arise from proteolytic processing in vivo. This program analyzes MS/MS data from LC analyses of proteolytic digests of protein mixtures that can include incompletely resolved components in biological samples. This reduces requirements for purification and thereby minimizes artifactual modifications during sample processing. A new algorithm to generate the theoretical signature peptide set and to calculate similarity scores between predicted and observed mass spectra has been tested and optimized with model proteins. The program has been applied to the identification of variants of proteins of biological interest, including APP cleavage products and iPLA(2)beta, and such applications demonstrate the utility of this approach.  相似文献   
90.
A new two-dimensional (2d) iron phosphate, (C2N2H10)Fe2O(PO4)2, has been synthesized under hydrothermal conditions in the system of FeCl3-H3PO4-C2N2H8-H2O. The crystal data is: space group P21/c, a=10.670(1) Å, b=10.897(1) Å, c=9.918(1) Å, β=105.632(1)°, Z=4. The layered structure consists of double sheet layers, of composition Fe2O(PO4)2, built from FeO5 trigonal bipyramids and PO4 tetrahedra. The amine holds the layers together via H-bonding. The study of the magnetic properties reveals two magnetic transitions at 160 and 30 K with spin-glass-like behavior below 160 K. By varying the hydrothermal conditions, three other iron phosphates were synthesized: the one-dimensional (1d) (C2N2H10)Fe(HPO4)2(OH)·H2O, the 2d (C2N2H10)Fe2(PO4)2(OH)2, and the three-dimensional (3d) (C2N2H10)2Fe4O(PO4)4·H2O. The 1d compound can be used as the starting reagent in the synthesis of both the 2d compound and the 3d lipscombite Fe3(PO4)2(OH)2 due to the similar building blocks in their structures. In the 3d phosphate (C2N2H10)2Fe4O(PO4)4·H2O, manganese can substitute for half of the iron atoms. Magnetic study shows ordering transitions at about 30 K, however, manganese substitution depresses the magnetic ordering temperature.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号