首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   19篇
  免费   5篇
化学   19篇
数学   2篇
物理学   2篇
综合类   1篇
  2021年   1篇
  2018年   5篇
  2017年   2篇
  2016年   1篇
  2014年   2篇
  2013年   2篇
  2012年   1篇
  2011年   1篇
  2010年   1篇
  2009年   1篇
  2008年   2篇
  2007年   1篇
  2006年   1篇
  2005年   1篇
  2004年   1篇
  2002年   1篇
排序方式: 共有24条查询结果,搜索用时 0 毫秒
21.
In this study, the copper sulfide nanoparticles (CuS‐NPs) and the zinc oxide/zinc hydroxide nanoparticles ((ZnO/Zn(OH)2‐NPs) were synthesized by a simple and low‐cost method, and the synthesized nanoparticles were characterized and identified by UV–Vis, field emission scanning electron microscopy (FE‐SEM), transmission electron microscopy (TEM) and X‐ray diffraction (XRD). The antimicrobial activity of the CuS‐NPs and the ZnO/Zn(OH)2‐NPs were examined by broth dilution to determine the minimal inhibitory concentration (MIC) of antibacterial agent required to inhibit the growth of a pathogen and the minimum bactericidal concentration (MBC) required to kill a particular bacterium. Agar disc diffusion method was used to determine the zone of inhibition. The nanoparticles demonstrated potent antibacterial activity against Klebsiella pneumonia (ATCC 1827), Acinetobacter baumannii (ATCC 150504), Escherichia coli (ATCC 33218) and Staphylococcus aureus (ATCC 25293). Antifungal activity against Aspergillus oryzae (PTCC 5164) was also obtained. The data obtained from antimicrobial activities by broth dilution and agar disc diffusion methods exhibited the CuS‐NPs were more effective than the ZnO/Zn(OH)2‐NPs. A good correlation was observed between the data obtained by both methods.  相似文献   
22.
Results from three-dimensional lattice Monte Carlo simulations of amphiphile–solvent mixtures are presented. The chemical potential is derived from the monomer distribution in different clusters rather than using a Widom particle insertion approach. The effect of tail and head characteristics on the non-ideality of these systems, aggregation number, and premicellar phenomena is considered. The aggregation number and CMC behavior of the simulated amphiphilic systems are compared with existing experimental results for non-ionic amphiphiles. Two kinds of polydispersity changing with total concentration of surfactants are observed which are related to phase transition phenomena. Shape variations in clusters are studied by calculating the eigenvalues of the gyration matrix; it is shown that large clusters are non-spherical. With the Maclaurin’s expansion of activity coefficient into volume fraction, the distribution of excess chemical potential with changing aggregation number is considered. Study of the degree of non-ideality of these amphiphiles reveals that asymmetric amphiphiles are characterized by greater non-ideality than symmetric amphiphiles. Goldstein’s parameters are calculated taking non-ideality into consideration. The difference between the phenomenological model and the simulation data is investigated.  相似文献   
23.
In the present work, the adsorption behavior at the liquid-air interface and micellization characteristics of mixtures of cetyltrimethylammonium bromide (CTAB) and p-(1,1,3,3-tetramethylbutyl) polyoxyethylene (TritonX-100) in aqueous media containing different concentrations of NaBr were investigated by surface tension and potentiometry measurements. From plots of surface tension (gamma) as a function of solution composition and total surfactant concentration, we determined the critical micelle concentration (CMC), minimum surface tension at the CMC (gamma(CMC)), surface excess (Gamma(max)), and mean molecular surface area (A(min)). On the basis of regular solution theory, the compositions of the adsorbed film (Z) and micelles (X(M)) were estimated, and then the interaction parameters in the micelles (beta(M)) and in the adsorbed film phase (beta(sigma)) were calculated. For all mole fraction ratios, the results showed synergistically enhanced ability to form mixed micelles as well as surface tension reduction. Furthermore beta was calculated by considering nonrandom mixing and head group size effects. It was observed that, for both the planar air/aqueous interface and micellar systems, the nonideality decreased as the amount of electrolyte in the aqueous medium was increased. This was attributed to a decrease of the surface charge density caused by increasing the concentration of bromide ions.  相似文献   
24.
The properties of anionic-rich and cationic-rich mixtures of CTAB (cetyltrimethylammonium bromide) and SDS (sodium dodecyl sulfate) were investigated with conductometry and surface tension measurements and by determining the surfactant NMR self-diffusion coefficients. The critical aggregate concentration (CAC), surface tension reduction effectiveness(gamma(CAC)), surface excess(Gamma(max)), and mean molecular surface area (A(min)) were determined from plots of the surface tension (gamma) as a function of the total surfactant concentration. The compositions of the adsorbed films (Z) and aggregates (chi) were estimated by using regular solution theory, and then the interaction parameters in the aggregates (beta) and the adsorbed film phases (beta(sigma)) were calculated. The results showed that the synergism between the surfactants enhances the formation of mixed aggregates and reduces the surface tension. Further, the nature and strength of the interaction between the surfactants in the mixtures were obtained by calculating the values of the following parameters: the interaction parameter, beta, the size parameter, rho, and the nonrandom mixing parameter, P*. These results indicate that in ionic surfactant mixtures the optimized packing parameter has the highest value and that the size parameter can be used to account for deviations from the predictions of regular solution theory. It was concluded that, for planar air/aqueous interfaces and aggregation systems, this nonideality increases as the temperature increases. This trend is attributed to the increased dehydration of the surfactant head groups that results from increases in temperature. Further, our conductometry measurements show that the counterion binding number of mixed micelles formed in mixtures with a high CTAB content is different to those with a high SDS content. This difference is due to either their different aggregation sizes or the different interactions between the head groups and the counterions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号