首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1538篇
  免费   162篇
  国内免费   177篇
化学   750篇
晶体学   14篇
力学   45篇
综合类   5篇
数学   113篇
物理学   333篇
综合类   617篇
  2024年   4篇
  2023年   29篇
  2022年   44篇
  2021年   47篇
  2020年   59篇
  2019年   54篇
  2018年   44篇
  2017年   59篇
  2016年   68篇
  2015年   69篇
  2014年   82篇
  2013年   109篇
  2012年   138篇
  2011年   104篇
  2010年   88篇
  2009年   78篇
  2008年   109篇
  2007年   77篇
  2006年   95篇
  2005年   55篇
  2004年   44篇
  2003年   33篇
  2002年   30篇
  2001年   25篇
  2000年   33篇
  1999年   43篇
  1998年   36篇
  1997年   30篇
  1996年   30篇
  1995年   19篇
  1994年   21篇
  1993年   18篇
  1992年   20篇
  1991年   18篇
  1990年   9篇
  1989年   13篇
  1988年   11篇
  1987年   5篇
  1986年   8篇
  1985年   3篇
  1984年   6篇
  1983年   1篇
  1982年   3篇
  1980年   2篇
  1979年   1篇
  1978年   1篇
  1964年   1篇
  1937年   1篇
排序方式: 共有1877条查询结果,搜索用时 220 毫秒
51.
52.
Portland cement have to hydrate in cold climates in some particular conditions. Therefore, a better understanding of cement hydration under low temperatures would benefit the cement-based composites application. In this study, Portland cement was, therefore, kinetically and thermodynamically simulated based on a simple kinetics model and minimization of Gibbs free energy. The results of an evaluation indicate that Portland cement hydration impact factors include the water–cement ratio (w/c), temperature, and specific surface area, with the latter being an especially remarkable factor. Therefore, increasing the specific surface area to an appropriate level may be a solution to speed the delayed hydration due to low temperatures. Meanwhile, the w/c ratio is believed to be controlled under cold climates with consideration of durability. The thermodynamic calculation results suggest that low-temperature influences can be divided into three levels: irrevocable effects (<0 °C), recoverable effects (0–10 °C), and insignificant effects (10–20 °C). Portland cement was additionally measured via X-ray diffraction, thermal gravity analysis, and low-temperature nitrogen adsorption test in a laboratory and comparisons were drawn that validate the simulation result.  相似文献   
53.
54.
55.
A new type of chain transfer agent used in reversible addition fragmentation chain transfer (RAFT) polymerization named 9‐anthracenylmethyl (4‐cyano‐4‐(N‐carbazylcarbodithioate) pentanoate) (ACCP) was synthesized with a total yield over 75% by the incorporation of both fluorescent donor and acceptor chromophores. Polymerization of heterotelechelic α,ω end‐labeled dye‐functionalized polystyrene (PS), poly(methyl methacrylate) (PMMA), and poly(n‐butyl methacrylate) (PBMA) with adjustable molecular weights and narrow polydispersity could be conducted by a one‐pot procedure through RAFT polymerization with this bischromophore chain transfer agent. The polymerizations demonstrated “living” controlled characteristics. By taking advantage of the characteristic fluorescence resonance energy transfer (FRET) response between the polymer chain terminals, the variation of chain dimensions in solution from the dilute region to the semidilute region can be monitored by changes in the ratio of the fluorescence intensities of the carbazolyl group to the anthryl group, which lends itself to potential applications in characterizing chain dimensions in solutions for thermodynamic or dynamic studies. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 2413–2420  相似文献   
56.
An in situ generated oxidation species of nickel quinolinylpropioamide intermediate was produced. Characterization by X-ray absorption near edge structure (XANES) and EPR provides complementary insights into this oxidized nickel species. With aliphatic amides and isocyanides as substrates, a nickel-catalyzed facile synthesis of structurally diverse five-membered lactams could be achieved.  相似文献   
57.
A simple and sensitive high‐performance liquid chromatography coupled with hybrid triple quadrupole–linear ion trap mass spectrometry (Q‐trap‐MS) method was developed and validated for the determination of veratramine, the major bioactive and neurotoxic component in Veratrum nigrum L. Veratramine and the internal standard (IS) were separated with a Waters Symmetry C18 column and eluted with a gradient mobile phase system containing acetonitrile and 0.1% aqueous formic acid. The analysis was performed by using positive electrospray ionization mode with multiple reaction monitoring (MRM). Transition ions of m/z 410.2 → 295.2 for veratramine and m/z 426.1 → 113.8 for the IS were monitored. The method was validated with a good linearity in the range of 1–1000 ng/mL and lower limit of quantification of 1 ng/mL. The precision (CV) of intra‐ and inter‐day ranged from 3.92 to 7.29%, while the accuracy (bias) intra‐ and inter‐day were between ?4.78 and 1.65%. The recovery, stability and matrix effect were within the acceptable ranges. Five metabolites of veratramine, including four hydroxylated and one sulfated metabolites, were tentatively identified using predictive MRM–information dependent acquisition–enhanced product ion mode (predictive MRM‐IDA‐EPI). The developed method was successfully applied to the pharmacokinetic and metabolic study of veratramine in mice after oral administration of veratramine. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   
58.
In this work, a series of novel acidic polymerized ionic liquids were used as heterogeneous catalyst for alkylation of o‐Xylene with styrene. And the effect of the amount of initiator and the type of acid used for ion exchange on catalyst structure and the catalytic performance of catalysts for alkylation were studied thoroughly. The experiment results show: when the percentage of the amount of initiator in the total material is 3%, the polymerized ionic liquid catalyst MPM‐SO3H‐[C3V][SO3CF3] has the most uniform with a specific surface area of 97.30 m2/g and a pore volume of 0.35 cm3/g. Benefiting from the unique structure features, MPM‐SO3H‐[C3V][SO3CF3] manifested an excellent catalytic performance for alkylation of o‐Xylene with styrene, along with the conversion of styrene was 96.8% and the yield of 1‐Phenyl‐1‐ortho‐xylene ethane was 94.7%. Therefore, this work provides a novel reference to the synthesis of polymerized ionic liquids and clearly explains the advantage of novel acidic polymerized ionic liquids on alkylation.  相似文献   
59.
The alkaline earth metals (M=Mg, Ca, Sr, and Ba) exhibit a +2 oxidation state in nearly all known stable compounds, but MI dimeric complexes with M−M bonding, [M2(en)2]2+, (en=ethylenediamine) of all these metals can be stabilized within the galleries of donor-type graphite intercalation compounds (GICs). These metals can also form GICs with more conventional metal (II) ion complexes, [M(en)2]2+. Here, the facile interconversion between dimeric-MI and monomeric-MII intercalates upon the addition/removal of en are reported. Thermogravimetry, powder X-ray diffraction, and pair distribution function analysis of total scattering data support the presence of either [M2(en)2]2+ or [M(en)2]2+ guests. This phase conversion requires coupling graphene and metal redox centers, with associated reversible M−M bond formation within graphene galleries. This chemistry allows the facile isolation of unusual oxidation states, reveals M0→M2+ reaction pathways, and present new opportunities in the design of hybrid conversion/intercalation materials for applications such as charge storage.  相似文献   
60.
In this work, ultrafast differential scanning calorimetry (UFDSC) is used to study the dynamics of phase separation. Taking poly(vinyl methyl ether)/polystyrene (PVME/PS) blend as the example, we firstly obtained the phase diagram that has lower critical solution temperature (LCST), together with the glass transition temperature (Tg) of the homogeneous blend with different composition. Then, the dynamics of the phase separation of the PVME/PS blend with a mass ratio of 7:3 was studied in the time range from milliseconds to hours, by the virtue of small time and spatial resolution that UFDSC offers. The time dependence of the glass transition temperature (Tg) of PVME‐rich phase, shows a distinct change when the annealing temperature (Ta) changes from below to above 385 K. This corresponds to the transition from the nucleation and growth (NG) mechanism to the spinodal decomposition (SD) mechanism, as was verified by morphological and rheometric investigations. For the SD mechanism, the temperature‐dependent composition evolution in PVME‐rich domain was found to follow the Williams–Landel–Ferry (WLF) laws. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2017 , 55, 1357–1364  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号