We present a systematic study on the excited electron-bubble states in superfluid (4)He using a time-dependent density functional approach. For the evolution of the 1P bubble state, two different functionals accompanied with two different time-development schemes are used, namely an accurate finite-range functional for helium with an adiabatic approximation for electron versus an efficient zero-range functional for helium with a real-time evolution for electron. We make a detailed comparison between the quantitative results obtained from the two methods, which allow us to employ with confidence the optimal method for suitable problems. Based on this knowledge, we use the finite-range functional to calculate the time-resolved absorption spectrum of the 1P bubble, which in principle can be experimentally determined, and we use the zero-range functional to real-time evolve the 2P bubble for several hundreds of picoseconds, which is theoretically interesting due to the break down of adiabaticity for this state. Our results discard the physical realization of relaxed, metastable configurations above the 1P state. 相似文献
The viscous properties, scanning electronic microscopy (SEM), and water/oil interfacial tension (IFT) of partially hydrolyzed polyacryamide (HPAM) and hydrophobically associating hydrolyzed polyacryamides modified with N‐dodecylacrylamide were studied with the objective of investigating the influence on destabilization of emulsions. As expected, the copolymers exhibit significant viscosity enhancing capacity and three‐dimensional network structures due to intermolecular hydrophobic associations, and also present high interfacial activities as the IFT decrease with increasing polymer concentration. As a result, the existences of copolymers increased both the viscosity of emulsions and the intensity of interfacial film, in which case slow down the diffusion of demulsifier molecules and enhance the stability of emulsions, finally, the separation of water from oil becomes more difficult. 相似文献
Zinc molybdate (ZnMoO4), a layer perovskite material, has the advantages of high stability, excellent optical and charge properties. However, its high band gap and high electron–hole recombination efficiency limit its application in the photocatalytic reduction field like hydrogen production. In this study, we used CdS as a co-catalyst and successfully prepared CdS/ZnMoO4 composite photocatalysts with different loadings. The hydrogen evolution rate of CdS/ZnMoO4 reached 530.2 µmol h?1 g?1, which was approximately 11 and 100 times more than rates of pure CdS and ZnMoO4 under the same conditions, respectively. It is the presence of CdS that contributed to this improved performance, which acted as an electron acceptor to separate electrons and holes. Besides, a reasonable mechanism was provided based on photoelectrochemical characterizations. CdS loading greatly improved the hydrogen evolution performance of ZnMoO4 under visible light, providing a direction to improving the performance of perovskite based photocatalysts.
Journal of Inclusion Phenomena and Macrocyclic Chemistry - Newly phthalocyanine derivative which carries 2,6-dimethoxyphenoxy bioactive groups as tetrakis from non-peripheral positions of the... 相似文献
Transition Metal Chemistry - The syntheses of highly soluble asymmetrically substituted metal free and zinc phthalocyanine derivatives bearing three 4-(4-(5-phenyl-1,3,4-oxadiazol-2-yl)phenoxy) and... 相似文献
A first-generation pair of chemiluminescent formaldehyde (FA) probes (CFAP540 and CFAP700) was reported recently. CFAP540 and CFAP700, with high selectivity and sensitivity to FA, are, respectively, suitable in cell and in vivo. Experimentalists have confirmed that both probes utilize a general 2-aza-Cope FA-reactive trigger and a chemiluminogenic phenoxydioxetane scaffold. The mechanism and detailed process of CFAP chemiluminescence (CL) remain largely unknown. In the present paper, (time-dependent) density functional theory calculations are performed on the entire reaction process of CFAP540 with FA to produce CL. The calculations elucidated the CL-producing process: FA initiates the decomposition of CFAP540 by dehydration condensation, and a phenoxy 1,2-dioxetane is formed through a series of reactions of aza-Cope rearrangement, hydrolysis of imine, and β-elimination of alkoxyl group. Afterwards, the produced phenoxy 1,2-dioxetane decomposes to produce the m-oxybenzoate derivative in the first singlet state (S1) via two crossings between potential energy surfaces of the ground state (S0) and S1 state. This m-oxybenzoate derivative was assigned as the light emitter of the CFAP540 CL. The CL-producing process and assignment of the light emitter of CFAP700 CL are similar with the corresponding ones of CFAP540. By analyzing the D-π-A architecture of the light emitters of CFAP540 and CFAP700, a series of CFAPs is theoretically designed and a scheme to modulate their CL from visible to near-infrared region is proposed by adjusting the length and structure of the π-bridge. 相似文献
The nervous system is a significant part of the human body, and peripheral nerve injury caused by trauma can cause various functional disorders. When the broken end defect is large and cannot be repaired by direct suture, small gap sutures of nerve conduits can effectively replace nerve transplantation and avoid the side effect of donor area disorders. There are many choices for nerve conduits, and natural materials and synthetic polymers have their advantages. Among them, the nerve scaffold should meet the requirements of good degradability, biocompatibility, promoting axon growth, supporting axon expansion and regeneration, and higher cell adhesion. Polymer biological scaffolds can change some shortcomings of raw materials by using electrospinning filling technology and surface modification technology to make them more suitable for nerve regeneration. Therefore, polymer scaffolds have a substantial prospect in the field of biomedicine in future. This paper reviews the application of nerve conduits in the field of repairing peripheral nerve injury, and we discuss the latest progress of materials and fabrication techniques of these polymer scaffolds. 相似文献