首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   280篇
  免费   4篇
  国内免费   1篇
化学   135篇
晶体学   6篇
力学   7篇
数学   40篇
物理学   81篇
综合类   16篇
  2016年   2篇
  2015年   3篇
  2014年   4篇
  2013年   3篇
  2012年   6篇
  2011年   8篇
  2010年   9篇
  2009年   7篇
  2008年   9篇
  2007年   11篇
  2006年   5篇
  2005年   11篇
  2004年   8篇
  2003年   3篇
  2002年   4篇
  2001年   3篇
  2000年   5篇
  1999年   10篇
  1998年   2篇
  1997年   2篇
  1996年   3篇
  1995年   3篇
  1994年   9篇
  1993年   7篇
  1992年   13篇
  1991年   9篇
  1990年   2篇
  1989年   5篇
  1988年   4篇
  1987年   4篇
  1986年   10篇
  1985年   10篇
  1984年   4篇
  1983年   2篇
  1982年   4篇
  1981年   8篇
  1980年   6篇
  1979年   3篇
  1978年   5篇
  1977年   6篇
  1976年   6篇
  1974年   5篇
  1973年   4篇
  1972年   3篇
  1971年   4篇
  1970年   8篇
  1968年   8篇
  1967年   5篇
  1932年   1篇
  1928年   1篇
排序方式: 共有285条查询结果,搜索用时 31 毫秒
201.
The transverse vibrations of rectangular plates are analysed by using the extended Kantorovich method of variational calculus. Several combinations of simply supported and clamped boundary conditions are discussed, and closed form solutions are obtained.  相似文献   
202.
203.
204.
205.
206.
A comprehensive series of lanthanide chelates has been prepared with a tetrapropargyl DOTAM type ligand. The complexes have been characterized by a combination of (1)H NMR, single-crystal X-ray crystallography, CEST and relaxation studies and have also been evaluated for potential use as paramagnetic chemical exchange saturation transfer (ParaCEST) contrast agents in magnetic resonance imaging (MRI). We demonstrate the functionalization of several chelates by means of alkyne-azide "click" chemistry in which a glucosyl azide is used to produce a tetra-substituted carbohydrate-decorated lanthanide complex. The carbohydrate periphery of the chelates has a potent influence on the CEST properties as described herein.  相似文献   
207.
Electroosmotic‐flow‐driven droplet generation integrated with capillary electrophoresis (CE) allows the molecular components separated by CE to be compartmentalized into a stream of droplets, as reported by D. T. Chiu and co‐workers in their Communication on page 2719 ff. and illustrated on the cover picture. After separation and droplet compartmentalization, the droplet‐confined bands either can be docked and studied on‐chip or removed off‐chip for a second‐dimension separation and further analysis.

  相似文献   

208.
In this paper, we defend and extend a (simple) mathematical model of akrasia.
Joseph S. FuldaEmail:
  相似文献   
209.
210.
In this paper we derive many infinite families of explicit exact formulas involving either squares or triangular numbers, two of which generalize Jacobi's 4 and 8 squares identities to 4n 2 or 4n(n + 1) squares, respectively, without using cusp forms. In fact, we similarly generalize to infinite families all of Jacobi's explicitly stated degree 2, 4, 6, 8 Lambert series expansions of classical theta functions. In addition, we extend Jacobi's special analysis of 2 squares, 2 triangles, 6 squares, 6 triangles to 12 squares, 12 triangles, 20 squares, 20 triangles, respectively. Our 24 squares identity leads to a different formula for Ramanujan's tau function (n), when n is odd. These results, depending on new expansions for powers of various products of classical theta functions, arise in the setting of Jacobi elliptic functions, associated continued fractions, regular C-fractions, Hankel or Turánian determinants, Fourier series, Lambert series, inclusion/exclusion, Laplace expansion formula for determinants, and Schur functions. The Schur function form of these infinite families of identities are analogous to the -function identities of Macdonald. Moreover, the powers 4n(n + 1), 2n 2 + n, 2n 2n that appear in Macdonald's work also arise at appropriate places in our analysis. A special case of our general methods yields a proof of the two Kac–Wakimoto conjectured identities involving representing a positive integer by sums of 4n 2 or 4n(n + 1) triangular numbers, respectively. Our 16 and 24 squares identities were originally obtained via multiple basic hypergeometric series, Gustafson's C nonterminating 65 summation theorem, and Andrews' basic hypergeometric series proof of Jacobi's 2, 4, 6, and 8 squares identities. We have (elsewhere) applied symmetry and Schur function techniques to this original approach to prove the existence of similar infinite families of sums of squares identities for n 2 and n(n + 1) squares. Our sums of more than 8 squares identities are not the same as the formulas of Mathews (1895), Glaisher (1907), Sierpinski (1907), Uspensky (1913, 1925, 1928), Bulygin (1914, 1915), Ramanujan (1916), Mordell (1917, 1919), Hardy (1918, 1920), Bell (1919), Estermann (1936), Rankin (1945, 1962), Lomadze (1948), Walton (1949), Walfisz (1952), Ananda-Rau (1954), van der Pol (1954), Krätzel (1961, 1962), Bhaskaran (1969), Gundlach (1978), Kac and Wakimoto (1994), and, Liu (2001). We list these authors by the years their work appeared.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号