首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   554篇
  免费   40篇
  国内免费   7篇
化学   356篇
晶体学   2篇
力学   15篇
数学   24篇
物理学   167篇
综合类   37篇
  2023年   2篇
  2022年   7篇
  2021年   6篇
  2020年   21篇
  2019年   8篇
  2018年   9篇
  2017年   3篇
  2016年   9篇
  2015年   11篇
  2014年   26篇
  2013年   29篇
  2012年   36篇
  2011年   24篇
  2010年   22篇
  2009年   23篇
  2008年   32篇
  2007年   32篇
  2006年   31篇
  2005年   40篇
  2004年   34篇
  2003年   27篇
  2002年   9篇
  2001年   20篇
  2000年   17篇
  1999年   10篇
  1998年   9篇
  1997年   9篇
  1996年   10篇
  1995年   6篇
  1994年   9篇
  1993年   6篇
  1992年   11篇
  1991年   7篇
  1990年   4篇
  1989年   3篇
  1988年   3篇
  1985年   3篇
  1984年   6篇
  1983年   2篇
  1982年   4篇
  1981年   3篇
  1980年   2篇
  1979年   2篇
  1978年   2篇
  1975年   3篇
  1970年   1篇
  1969年   1篇
  1968年   1篇
  1967年   2篇
  1943年   1篇
排序方式: 共有601条查询结果,搜索用时 0 毫秒
21.
22.
It is experimentally known that a polymer matrix phase in a composite of ferroelectric particles dispersed in a ferroelectric polymer can be polarized by using a few cycles of an ac field, without causing much disturbance to the state of polarization of the inclusion particles. This paper attempts to investigate this special poling process for a typical ferroelectric composite system of lead zirconate titanate (PZT) ceramic particles in a vinylidene fluoride-trifluoroethylene (P(VDF-TrFE)) copolymer matrix, upon the application of 10 Hz ac fields of various amplitudes. Compared to a copolymer sample, the composite samples can be polarized at a lower field, and hence show a larger remanent polarization at the same poling field. Among the composites, the observed remanent polarization increases with increasing ceramic volume fraction. These experimental observations can be understood by a simple model, in which space charges are allowed to accumulate at the particle-matrix interfaces because of the electrical conductivity of the constituents. At a fast switching poling field of 10 Hz, the calculation shows that conductivity and charge accumulation effects in the composite are only minimal. Accordingly, although the PZT phase as well as the copolymer phase are both polarized under the ac field, the ceramic phase is only polarized to about 10% when the copolymer phase is almost fully polarized. Thus, one can still use an ac field to polarize only the copolymer phase of the composite without altering the polarization state of the ceramic phase significantly. PACS 77.22.Ej; 77.84.Lf  相似文献   
23.
We experimentally demonstrate a passively mode-locked fiber laser employing a fiber-based semiconductor saturable absorber (SSA) operating in transmission. Polarization rotation locked vector solitons are observed in the laser. Due to the intrinsic dynamic feature of the laser, period-doubling of these vector solitons has also been observed. Furthermore, extra spectral sidebands are formed on the optical spectrum, caused by the energy exchange between the two orthogonal polarization components of the vector solitons. By careful reduction of the pump power together with fine adjustment to the cavity birefringence, period-one state can further be obtained. Additionally, the phase noise properties of the vector soliton fiber laser have also been characterized experimentally and analytically.  相似文献   
24.
A direct and unifying scheme for disclosure of periodic wave solutions of both nonlinear differential and difference equations is presented. The scheme is based on Hirota's bilinear form and certain Riemann theta function formulae. The relations between the periodic wave solutions and soliton solutions are rigorously established.  相似文献   
25.
The inhibitory activities, sulfhydryl bonds and far-UV circular dichroism (CD) spectra of Kunitz and Bowman–Birk soybean trypsin inhibitors (KTI and BBTI) were measured before and after ultrasound treatments. The differences between KTI and BBTI in conformation changes and resistance to ultrasound were observed. The secondary structures of KTI were found to be composed of β-sheet (22.5%), β-turn (16.2%) and random coils (61.4%) while that of BBTI composed of only β-sheet (52.6%) and random coils (47.4%). KTI lost its inhibitory activity more quickly than BBTI, proportionally to the ultrasound amplitudes and sonication durations used. Relevant synchronous phenomena observed included the inactivation of KTI, significant rise in sulfhydryl content and corresponding conformation changes, in which there were dramatic decreases in both β-turn and random coil contents and increase in the β-sheet structure over the entire sonication duration and ultrasonic amplitude scale used by the study. Ultrasound affected the activities and conformations of KTI and BBTI by exerting an influence on their disulfide bonds. For KTI, up to 55% of inhibitory activity could be inactivated, at which about 71.5% of disulfide bonds were altered and the [θ]200nm value was changed from native −2545 deg cm2 dmol−1 to −1827 deg cm2 dmol−1. Whereas for BBTI, far-UV CD spectra, β-sheet and random structures were barely affected, only about 5.29% of disulfide bonds were found altered and the [θ]200nm value was changed only from native −797 deg cm2 dmol−1 to −700 deg cm2 dmol−1. It is concluded that ultrasound inactivates KTI by inducing a reduction in the disulfide bonds and then changes the conformations.  相似文献   
26.
Kwok S  Zhang Y 《Nature》2011,479(7371):80-83
Unidentified infrared emission bands at wavelengths of 3-20 micrometres are widely observed in a range of environments in our Galaxy and in others. Some features have been identified as the stretching and bending modes of aromatic compounds, and are commonly attributed to polycyclic aromatic hydrocarbon molecules. The central argument supporting this attribution is that single-photon excitation of the molecule can account for the unidentified infrared emission features observed in 'cirrus' clouds in the diffuse interstellar medium. Of the more than 160 molecules identified in the circumstellar and interstellar environments, however, not one is a polycyclic aromatic hydrocarbon molecule. The detections of discrete and broad aliphatic spectral features suggest that the carrier of the unidentified infrared emission features cannot be a pure aromatic compound. Here we report an analysis of archival spectroscopic observations and demonstrate that the data are most consistent with the carriers being amorphous organic solids with a mixed aromatic-aliphatic structure. This structure is similar to that of the organic materials found in meteorites, as would be expected if the Solar System had inherited these organic materials from interstellar sources.  相似文献   
27.
Facile ring-opening polymerization of cyclic aryl ether oligomers containing the 1,2-dibenzoylbenzene moiety to form high molecular weight linear polymers in the presence of a nucleophilic initiator is described. The polymerization can be initiated in the melt in the presence of a nucleophilic initiator such as potassium carbonate, cesium fluoride, and alkali phenoxides. Various alkali phenoxides were investigated as potential nucleophilic initiators. The polymerization reaction rate in the melt increases in the order of K+ > Na+ > Cs+, and in the order of OPhPhO > PhO > PhOPhO > PhPhO. However, the polymerization in an aprotic dipolar solvent is faster in the presence of cesium phenoxide than in the presence of potassium phenoxide. Polymerization of the cyclic oligomers in solution demonstrates that the ring-opening polymerization proceeds via a chain-growth mechanism and involves a transetherification reaction between linear and cyclic aryl ether oligomers. The ring-chain equilibrium is much more favorable towards linear polymers. Since little or no ring strain exists in the cyclic system, the transetherification reactions are indiscriminate with regards to cyclic or linear chains and the interchain equilibration is also a facile process during polymerization. This intermolecular transetherification has been demonstrated by using low molecular weight aryl ethers to control the molecular weight of the polymer formed via ring-opening polymerization. © 1996 John Wiley & Sons, Inc.  相似文献   
28.
A ray model is developed and validated for prediction of the insertion loss of hard parallel noise barriers placed in an urban environment either in front of a row of tall buildings or in a street canyon. The model is based on the theory of geometrical acoustics for sound diffraction at the edge of a barrier and multiple reflections by the ground, barrier and fa?ade surfaces. It is crucial to include the diffraction and multiple reflection effects in the ray model as they play important roles in determining the overall sound pressure levels for receivers located between the fa?ade and the near-side barrier. Comparisons of the ray model with a wave-based boundary element formulation show reasonably good agreement over a broad frequency range. Results of scale model experimental studies are also presented. It is demonstrated that the ray model agrees tolerably well with the scale model experimental data.  相似文献   
29.
Using reverse thinking of the aggregation-induced emission (AIE) principle, we demonstrate an ingenious and universal protocol for amplifying molecular motions to boost photothermal efficiency of fibers. Core–shell nanofibers having the olive oil solution of AIE-active molecules as the core surrounded by PVDF-HFP shell were constructed by coaxial electrospinning. The molecularly dissolved state of AIE-active molecules allows them to freely rotate and/or vibrate in nanofibers upon photoexcitation and thus significantly elevates the proportion of non-radiative energy dissipation, affording impressive heat-generating efficiency. Photothermal evaluation shows that the core–shell nanofibers with excellent durability can reach up to 22.36 % of photothermal conversion efficiency, which is 26-fold as the non-core–shell counterpart. Such a core–shell fiber can be used for photothermal textiles and solar steam generation induced by natural sunlight with green and carbon-zero emission.  相似文献   
30.

Other Index

Key Word Index for Volume 11  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号