首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   100168篇
  免费   10856篇
  国内免费   10236篇
化学   46754篇
晶体学   860篇
力学   3676篇
综合类   697篇
数学   7733篇
物理学   23061篇
综合类   38479篇
  2024年   382篇
  2023年   1424篇
  2022年   2426篇
  2021年   2872篇
  2020年   2677篇
  2019年   2526篇
  2018年   2337篇
  2017年   2380篇
  2016年   3366篇
  2015年   3830篇
  2014年   4967篇
  2013年   6183篇
  2012年   7016篇
  2011年   7589篇
  2010年   5910篇
  2009年   5923篇
  2008年   6550篇
  2007年   6322篇
  2006年   5557篇
  2005年   4998篇
  2004年   3846篇
  2003年   3275篇
  2002年   3588篇
  2001年   3048篇
  2000年   2581篇
  1999年   2606篇
  1998年   2038篇
  1997年   2019篇
  1996年   1829篇
  1995年   1656篇
  1994年   1537篇
  1993年   1324篇
  1992年   1147篇
  1991年   1049篇
  1990年   944篇
  1989年   778篇
  1988年   649篇
  1987年   490篇
  1986年   346篇
  1985年   294篇
  1984年   167篇
  1983年   113篇
  1982年   107篇
  1981年   76篇
  1980年   75篇
  1979年   67篇
  1978年   55篇
  1976年   42篇
  1974年   43篇
  1973年   50篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
31.
Cinnabar, as one of the most widely used mineral drugs in traditional Chinese medicines, has been proven to have prominent curative effects in clinical use for more than 2000 years. But the safety and toxicity of the drug has been under constant debate in clinic usage. Metallothionein (MT) contains about 30% of cysteine in the molecule, and plays an important detoxification role against heavy metals. In this study, it was used as a biomarker to assess mercurial accumulation in rats fed orally with cinnabar. After feeding rats with cinnabar by gastric gavage at different dosages and at different times, the distribution of heavy metals (including mercury, copper and zinc) and MT was investigated among rat tissues, including liver, kidney, heart, brain, testis and blood. Metals and MT determinations were carried out using inductively coupled plasma mass spectrometry (ICP‐MS) and a modified mercury saturation assay technique respectively. The results indicated that mercury was easily accumulated in the tissues of rats exposed to cinnabar, especially in kidney. For example: at a feeding dosage of 5 g kg?1 (bw) for 4 weeks, the mercury concentrations in kidney were 13, 8.7, 21.6 and 26 times those in liver, testis, brain and heart respectively; and at 2.5 g kg?1 (bw) for 2 weeks, the mercury concentrations in kidney were 21, 2.1, 3 and 21 times those in liver, testis, brain and heart respectively. In addition, mercury in kidney and liver of all cinnabar groups was significantly higher than that of the control group (P < 0.01). A high positive correlation observed between MT concentrations and mercury levels in both liver and kidney (R2 = 0.9299, P < 0.02 for liver; R2 = 0.9923, P < 0.0008 for kidney) indicated that MT could be used as a biomarker for mercury in tissues. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   
32.
In this paper, a projection method is presented for solving the flow problems in domains with moving boundaries. In order to track the movement of the domain boundaries, arbitrary‐Lagrangian–Eulerian (ALE) co‐ordinates are used. The unsteady incompressible Navier–Stokes equations on the ALE co‐ordinates are solved by using a projection method developed in this paper. This projection method is based on the Bell's Godunov‐projection method. However, substantial changes are made so that this algorithm is capable of solving the ALE form of incompressible Navier–Stokes equations. Multi‐block structured grids are used to discretize the flow domains. The grid velocity is not explicitly computed; instead the volume change is used to account for the effect of grid movement. A new method is also proposed to compute the freestream capturing metrics so that the geometric conservation law (GCL) can be satisfied exactly in this algorithm. This projection method is also parallelized so that the state of the art high performance computers can be used to match the computation cost associated with the moving grid calculations. Several test cases are solved to verify the performance of this moving‐grid projection method. Copyright © 2004 John Wiley Sons, Ltd.  相似文献   
33.
In order to study cross flow induced vibration of heat exchanger tube bundles, a new fluid–structure interaction model based on surface vorticity method is proposed. With this model, the vibration of a flexible cylinder is simulated at Re=2.67 × 104, the computational results of the cylinder response, the fluid force, the vibration frequency, and the vorticity map are presented. The numerical results reproduce the amplitude‐limiting and non‐linear (lock‐in) characteristics of flow‐induced vibration. The maximum vibration amplitude as well as its corresponding lock‐in frequency is in good agreement with experimental results. The amplitude of vibration can be as high as 0.88D for the case investigated. As vibration amplitude increases, the amplitude of the lift force also increases. With enhancement of vibration amplitude, the vortex pattern in the near wake changes significantly. This fluid–structure interaction model is further applied to simulate flow‐induced vibration of two tandem cylinders and two side‐by‐side cylinders at similar Reynolds number. Promising and reasonable results and predictions are obtained. It is hopeful that with this relatively simple and computer time saving method, flow induced vibration of a large number of flexible tube bundles can be successfully simulated. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   
34.
N‐(4‐nitrophenyl)‐4′,4″‐bisformyl‐diphenylamine was synthesized from N‐(4‐nitrophenyl)‐diphenylamine by the Vilsmeier‐Haack reaction. Soluble aromatic poly(azomethine)s (PAMs) were prepared by the solution polycondensation of N‐(4‐nitrophenyl)‐4′,4″‐bisformyl‐diphenylamine and aromatic diamine in N‐methyl‐2‐pyrrolidone (NMP) at room temperature under reduced pressure. All the PAMs are highly soluble in various organic solvents, such as N,N‐dimethylacetamide (DMAc), chloroform (CHCl3), and tetrahydrofuran (THF). Differential scanning calorimetry (DSC) indicated that these PAMs had glass‐transition temperatures (Tgs) in the range of 170–230 °C, and a 10% weight‐loss temperatures in excess of 490 °C with char yield at 800 °C in nitrogen higher than 60%. These PAMs in NMP solution showed UV‐Vis charge‐transfer (CT) absorption at 405–421 nm and photoluminescence peaks around 462–466 nm with fluorescence quantum efficiency (ΦF) 0.10–0.99%. The highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) energy levels of these PAMs can be determined from cyclic voltammograms as 4.86–5.43 and 3.31–3.34 eV, respectively. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 4921–4932, 2007  相似文献   
35.
Three novel zinc complexes [Zn(dbsf)(H2O)2] ( 1 ), [Zn(dbsf)(2,2′‐bpy)(H2O)]·(i‐C3H7OH) ( 2 ) and [Zn(dbsf)(DMF)] ( 3 ) (H2dbsf = 4,4′‐dicarboxybiphenyl sulfone, 2,2′‐bpy = 2,2′‐bipyridine, i‐C3H7OH = iso‐propanol, DMF = N,N‐dimethylformamide) were first obtained and characterized by single crystal X‐ray crystallography. Although the results show that all the complexes 1–3 have one‐dimensional chains formed via coordination bonds, unique three‐dimensional supramolecular structures are formed due to different coordination modes and configuration of the dbsf2? ligand, hydrogen bonds and π–π interactions. Iso‐propanol molecules are in open channels of 2 while larger empty channels are formed in 3 . As compared with emission band of the free H2dbsf ligand, emission peaks of the complexes 1–3 are red‐shifted, and they show blue emission, which originates from enlarging conjugation upon coordination. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   
36.
A new biodegradable starch graft copolymer, starch‐g‐poly(1,4‐dioxan‐2‐one), was synthesized through the ring‐opening graft polymerization of 1,4‐dioxan‐2‐one onto a starch backbone. The grafting reactions were conducted with various 1,4‐dioxan‐2‐one/starch feed ratios to obtain starch‐g‐poly(1,4‐dioxan‐2‐one) copolymers with various poly(1,4‐dioxan‐2‐one) graft structures. The microstructure of starch‐g‐poly(1,4‐dioxan‐2‐one) was characterized in detail with one‐ and two‐dimensional NMR spectroscopy. The effect of the feed composition on the resulting microstructure of starch‐g‐poly(1,4‐dioxan‐2‐one) was investigated. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 3417–3422, 2004  相似文献   
37.
Polyphenylsilsesquioxane (PPSQ) was incorporated into an epoxy resin to prepare organic–inorganic composites, and two strategies were adopted to afford composites with different morphologies. Phase separation induced by polymerization occurred in the physical blending system. However, nanostructured composites were obtained when a catalytic amount of aluminum triacetylacetonate was added to mediate the reaction between PPSQ and diglycidyl ether of bisphenol A (DGEBA). The intercomponent reaction significantly suppressed the phase separation on the micrometer scale. Organic–inorganic composites with different morphologies displayed quite different thermomechanical properties. Both differential scanning calorimetry and dynamic mechanical analysis showed that the nanostructured composites possessed higher glass‐transition temperatures than the phase‐separated composites with the same loading of PPSQ, although the intercomponent reaction between PPSQ and DGEBA reduced the crosslinking density of the epoxy matrix. This result was ascribed to the presence of nanosized PPSQ domains in the nanostructured composites, which acted as physical crosslinking sites and thus reinforced the epoxy networks. The nanoreinforcement of the PPSQ domains afforded the enhanced dynamic storage modulus for the nanostructured composites in comparison with the phase‐separated composites with a PPSQ concentration less than 15 wt %. In terms of thermogravimetric analysis, the organic–inorganic composites displayed improved thermal stability and flame retardancy. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 1093–1105, 2006  相似文献   
38.
A novel cyclic ether monomer 3‐{2‐[2‐(2‐hydroxyethoxy)ethoxy]ethoxy‐methyl}‐3′‐methyloxetane (HEMO) was prepared from the reaction of 3‐hydroxymethyl‐3′‐methyloxetane tosylate with triethylene glycol. The corresponding hyperbranched polyether (PHEMO) was synthesized using BF3·Et2O as initiator through cationic ring‐opening polymerization. The evidence from 1H and 13C NMR analyses revealed that the hyperbranched structure is constructed by the competition between two chain propagation mechanisms, i.e. active chain end and activated monomer mechanism. The terminal structure of PHEMO with a cyclic fragment was definitely detected by MALDI‐TOF measurement. A DSC test implied that the resulting polyether has excellent segment motion performance potentially beneficial for the ion transport of polymer electrolytes. Moreover, a TGA assay showed that this hyperbranched polymer possesses high thermostability as compared to its liquid counterpart. The ion conductivity was measured to reach 5.6 × 10?5 S/cm at room temperature and 6.3 × 10?4 S/cm at 80 °C after doped with LiTFSI at a ratio of Li:O = 0.05, presenting the promise to meet the practical requirement of lithium ion batteries for polymer electrolytes. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 3650–3665, 2006  相似文献   
39.
Size‐controllable polypyrrole (PPy)/multiwalled carbon nanotube (MWCNT) composites have been synthesized by in situ chemical oxidation polymerization directed by various concentrations of cationic surfactant cetyltrimethylammonium bromide (CTAB). Raman spectra, FTIR, SEM, and TEM were used to characterize their structure and morphology. These results showed that the composites are core (MWCNT)–shell (PPy) tubular structures with the thickness of the PPy layer in the range of 20–40 nm, depending on the concentration of CTAB. Raman and FTIR spectra of the composites are almost identical to those of PPy alone. The electrical conductivities of these composites are 1–2 orders of magnitude higher than those of PPy without MWCNTs. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 6449–6457, 2006  相似文献   
40.
A series of new polyimides were prepared via the polycondensation of (3‐amino‐2,4,6‐trimethylphenyl)‐(3′‐aminophenyl)methanone and aromatic dianhydrides, that is, 3,3′,4,4′‐biphenyltetracarboxylic dianhydride (BPDA), 4,4′‐oxydiphthalic anhydride, 3,3′,4,4′‐benzophenone tetracarboxylic dianhydride, and 2,2′‐bis(3,4‐dicarboxyphenyl) hexafluoropropane dianhydride. The structures of the polyimides were characterized by Fourier transform infrared and NMR measurements. The properties were evaluated by solubility tests, ultraviolet–visible analysis, differential scanning calorimetry, and thermogravimetric analysis. The two different meta‐position‐located amino groups with respect to the carbonyl bridge in the diamine monomer provided it with an unsymmetrical structure. This led to a restriction on the close packing of the resulting polymer chains and reduced interchain interactions, which contributed to the solubility increase. All the polyimides except that derived from BPDA had good solubility in strong aprotic solvents, such as N‐methyl‐2‐pyrrolidinone, N,N′‐dimethylacetamide, N,N‐dimethylformamide, and dimethyl sulfone, and in common organic solvents, such as cyclohexanone and chloroform. In addition, these polyimides exhibited high glass‐transition values and excellent thermal properties, with an initial thermal decomposition temperature above 470 °C and glass‐transition temperatures in the range of 280–320 °C. The polyimide films also exhibited good transparency in the visible‐light region, with transmittance higher than 80% at 450 nm and a cutoff wavelength lower than 370 nm. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 1291–1298, 2006  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号