首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   209233篇
  免费   25378篇
  国内免费   16764篇
化学   98959篇
晶体学   1629篇
力学   9829篇
综合类   988篇
数学   17354篇
物理学   56038篇
综合类   66578篇
  2024年   858篇
  2023年   3581篇
  2022年   5791篇
  2021年   6483篇
  2020年   6294篇
  2019年   5696篇
  2018年   5165篇
  2017年   4993篇
  2016年   7431篇
  2015年   7773篇
  2014年   9956篇
  2013年   12258篇
  2012年   14695篇
  2011年   15173篇
  2010年   10537篇
  2009年   10691篇
  2008年   11685篇
  2007年   10977篇
  2006年   9728篇
  2005年   8669篇
  2004年   6583篇
  2003年   5345篇
  2002年   5082篇
  2001年   4655篇
  2000年   4486篇
  1999年   6674篇
  1998年   6078篇
  1997年   6047篇
  1996年   5974篇
  1995年   5030篇
  1994年   4722篇
  1993年   4000篇
  1992年   3518篇
  1991年   3184篇
  1990年   2664篇
  1989年   2288篇
  1988年   1880篇
  1987年   1329篇
  1986年   959篇
  1985年   630篇
  1984年   387篇
  1983年   259篇
  1982年   223篇
  1981年   159篇
  1980年   99篇
  1979年   69篇
  1977年   53篇
  1976年   61篇
  1975年   62篇
  1974年   80篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
181.
Liquid‐crystalline, segmented polyurethanes with methoxy–biphenyl mesogens pendant on the chain extender were synthesized by the conventional prepolymer technique and esterification reaction. Two, side‐chain, liquid‐crystalline (SCLC) polyurethanes with mesogens having spacers of six and eight methylene units were prepared. The structures of the mesogenic units and SCLC polyurethanes were confirmed by Fourier transform infrared spectroscopy and 1H NMR. Polymer properties were also examined by solubility tests, water uptakes, and inherent viscosity measurements. Differential scanning calorimetry studies indicated that the transition temperature of the isotropic to the liquid‐crystalline phase decreased with increasing spacer length. Wide‐angle X‐ray diffraction (WAXD) studies revealed the existence of liquid‐crystalline phases for both SCLC polyurethanes. Polarized optical microscopic investigations further confirmed the thermotropic liquid‐crystalline behaviors and nematic mesophases of both samples. Thermogravimetric analysis displayed better thermal stabilities for both SCLC polymers and indicated that the presence of mesogenic side chains may increase the thermal stability of segmented polyurethanes. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 290–302, 2004  相似文献   
182.
Ethylisobutylaluminoxane (EBAO) and its analogues were synthesized by a reaction between an triethylaluminum (Et3Al)/triisobutylaluminum (i‐Bu3Al) mixture and 4‐fluorobenzeneboronic acid, phenylboronic acid, or n‐butaneboronic acid and subsequent hydrolysis with water. They were used as cocatalysts in ethylene polymerization catalyzed by an iron complex {[(ArN?C(Me))2C5H3N]FeCl2, where Ar is 2,6‐diisopropylphenyl}. Polyethylene with a high molecular weight and a narrow molecular weight distribution was prepared with modified EBAOs, and the performance of the iron complex at high polymerization temperatures was greatly improved. The activators for the iron complex also affected the polymerization activity and the molecular weight of the resultant polyethylene. It was suggested that the stereo and electronic effects of the substitute groups of aluminoxane contributed to the improved performance of the new activators. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 1093–1099, 2004  相似文献   
183.
184.
A conjugated poly(p‐CN‐phenylenevinylene) (PCNPV) containing both electron‐donating triphenylamine units and electron‐withdrawing cyano groups was prepared via Knoevenagel condensation in a good yield. Gel permeation chromatography suggested that the soluble polymer had a very high weight‐average molecular weight of 309,000. A bright and saturated red emission was observed under UV excitation in solution and film. Cyclic voltammetry showed that the polymer presented quasi‐reversible oxidation with a relatively low potential because of the triphenylamine unit. A single‐layer indium tin oxide/PCNPV/Mg–Ag device emitted a bright red light (633 nm). © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 3947–3953, 2004  相似文献   
185.
The composites of biodegradable poly(propylene carbonate) (PPC) reinforced with short Hildegardia populifolia natural fiber were prepared by melt mixing followed by compression molding. The mechanical properties, thermal properties, and morphologies of the composites were studied via static and dynamic mechanical measurements, thermogravimetric analysis, and scanning electron microscopy (SEM) techniques, respectively. Static tensile tests showed that the stiffness and tensile strength of the composites increased with an increasing fiber content. However, the elongation at break and the energy to break decreased dramatically with the addition of short fiber. The relationship between the experimental results and the compatibility or interaction between the PPC matrix and fiber was correlated. SEM observations indicated good interfacial contact between the short fiber and PPC matrix. Thermogravimetric analysis revealed that the introduction of short Hildegardia populifolia fiber led to a slightly improved thermooxidative stability of PPC. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 666–675, 2004  相似文献   
186.
A series of polymer electrolytes based on multiarm polymers and lithium salt complexes were characterized by Fourier transform infrared spectroscopy (FTIR), differential scanning calorimetry (DSC), and impedance measurement. The relationships of conductivity with salt concentration, temperature, and arm numbers are discussed. It is suggested that the star polymer has a higher solvency and ion transfer ability on lithium salts than on linear polymers. The conductivity maximum appeared at a higher salt concentration ([EO]/[Li] = 4). Impedance measurement suggested that the optimum conductivity was 2 × 10?4 s · cm?1. The conductivity increased with temperature and the dependence of ionic conductivity on temperature fits the Arrhenius equation. Among the studied systems, the star polymer with a five arm number performs better than other structures. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 4195–4198, 2004  相似文献   
187.
Polybenzoxazine (PBZZ) thin films can be fabricated by the plasma‐polymerization technique with, as the energy source, plasmas of argon, oxygen, or hydrogen atoms and ions. When benzoxazine (BZZ) films are polymerized through the use of high‐energy argon atoms, electronegative oxygen atoms, or excited hydrogen atoms, the PBZZ films that form possess different properties and morphologies in their surfaces. High‐energy argon atoms provide a thermodynamic factor to initiate the ring‐opening polymerization of BZZ and result in the polymer surface having a grid‐like structure. The ring‐opening polymerization of the BZZ film that is initiated by cationic species such as oxygen atoms in plasma, is propagated around nodule structures to form the PBZZ. The excited hydrogen atom plasma initiates both polymerization and decomposition reactions simultaneously in the BZZ film and results in the formation of a porous structure on the PBZZ surface. We evaluated the surface energies of the PBZZ films polymerized by the action of these three plasmas by measuring the contact angles of diiodomethane and water droplets. The surface roughness of the films range from 0.5 to 26 nm, depending on the type of carrier gas and the plasma‐polymerization time. By estimating changes in thickness, we found that the PBZZ film synthesized by the oxygen plasma‐polymerization process undergoes the slowest rate of etching in CF4 plasma. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 4063–4074, 2004  相似文献   
188.
Although there have been many reports on the preparation and applications of various polymer nanofibers with the electrospinning technique, the understanding of synthetic parameters in electrospinning remains limited. In this article, we investigate experimentally the influence of solvents on the morphology of the poly(vinyl pyrrolidone) (PVP) micro/nanofibers prepared by electrospinning PVP solution in different solvents, including ethanol, dichloromethane (MC) and N,N‐dimethylformamide (DMF). Using 4 wt % PVP solutions, the PVP fibers prepared from MC and DMF solvents had a shape like a bead‐on‐a‐string. In contrast, smooth PVP nanofibers were obtained with ethanol as a solvent although the size distribution of the fibers was somewhat broadened. In an effort to prepare PVP nanofibers with small diameters and narrow size distributions, we developed a strategy of using mixed solvents. The experimental results showed that when the ratio of DMF to ethanol was 50:50 (w/w), regular cylindrical PVP nanofibers with a diameter of 20 nm were successfully prepared. The formation of these thinnest nanofibers could be attributed to the combined effects of ethanol and DMF solvents that optimize the solution viscosity and charge density of the polymer jet. In addition, an interesting helical‐shaped fiber was obtained from 20 wt % PVP solution in a 50:50 (w/w) mixed ethanol/DMF solvent. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 3721–3726, 2004  相似文献   
189.
The tetramethoxysilane (TMOS)/2‐hydroxylethyl methacrylate (HEMA) hybrid gels were synthesized with acid and base catalysts, via the in situ polymerization of HEMA, with and without the cosolvent methanol. With methanol in the TMOS/HEMA sol, the enhanced esterification and depolymerization reactions of the silanols resulted in a slower growth of silica particles. The silica particles that were synthesized with an acid catalyst were less than 40 nm. The thermal resistance of the poly(2‐hydroxyethyl methacrylate) (PHEMA) chains was enhanced by the addition of colloidal silica. The Fourier transform infrared characterizations and the exothermal peaks on the differential scanning calorimetry traces of these hybrid gels indicated chemical hybridization occurring as a result of condensation of the colloid silica and PHEMA at higher temperatures. Hence, the residual weight content of the hybrid gel after its synthesis with the base catalyst was even higher than the content of TMOS in the hybrid sol. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 3476–3486, 2004  相似文献   
190.
In order to elucidate the distributions of the elements among the particulate and dissolved fractions in pond water, major-to-ultratrace elements in different sizes of particles as well as in the filtrate passed through the 0.05 microm filter were determined by inductively coupled plasma atomic emission spectrometry (ICP-AES) and inductively coupled plasma mass spectrometry (ICP-MS). The different sizes of particle samples (ca. 100-300 microg each) were collected on the membrane filters with pore sizes of 10, 3.0, 1.2, 0.4, 0.2 and 0.05 microm, respectively, by sequential fractionation. As a result, about 40 elements in different sizes of particles could be determined by ICP-AES and ICP-MS, after acid digestion using HNO3/HF/HClO4. Then, the fractional distribution factors of major-to-ultratrace elements among the particulate and dissolved fractions were estimated from the analytical results. The total contents of Al, Fe, Ti, REEs (rare earth elements), Bi, Pb and Ag in the particulate fractions (larger than 0.05 microm) were more than 80-90%, while those of Ca, Sr, Cs, W, Ba, Mn and Co in the dissolved fraction, which corresponded to the filtrate passed through the 0.05 microm membrane filter, were more than 80%. It was further found that the fractional distributions of Cu and Zn in the dissolved fraction were ca. 50%. In addition, the enrichment factors (EFs) of the elements in the particulate fractions with particle sizes of 3.0-10 microm and 0.05-0.2 microm were estimated to elucidate their geochemical characteristics in natural water.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号