首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   19905篇
  免费   2403篇
  国内免费   1618篇
化学   10658篇
晶体学   185篇
力学   816篇
综合类   67篇
数学   1776篇
物理学   4675篇
综合类   5749篇
  2024年   75篇
  2023年   415篇
  2022年   609篇
  2021年   707篇
  2020年   789篇
  2019年   642篇
  2018年   573篇
  2017年   513篇
  2016年   777篇
  2015年   852篇
  2014年   975篇
  2013年   1276篇
  2012年   1456篇
  2011年   1461篇
  2010年   1026篇
  2009年   1032篇
  2008年   1214篇
  2007年   1096篇
  2006年   933篇
  2005年   917篇
  2004年   660篇
  2003年   570篇
  2002年   609篇
  2001年   509篇
  2000年   452篇
  1999年   553篇
  1998年   390篇
  1997年   344篇
  1996年   354篇
  1995年   350篇
  1994年   303篇
  1993年   267篇
  1992年   218篇
  1991年   179篇
  1990年   190篇
  1989年   141篇
  1988年   130篇
  1987年   84篇
  1986年   57篇
  1985年   47篇
  1984年   40篇
  1983年   17篇
  1982年   16篇
  1981年   20篇
  1980年   12篇
  1979年   8篇
  1976年   10篇
  1975年   11篇
  1971年   7篇
  1969年   6篇
排序方式: 共有10000条查询结果,搜索用时 671 毫秒
961.
A series of high surface area graphitic carbon materials (HSGCs) were prepared by ball-milling method. Effect of the graphitic degree of HSGCs on the catalytic performance of Ba-Ru-K/HSGC-x (x is the ball-milling time in hour) catalysts was studied using ammonia synthesis as a probe reaction. The graphitic degree and pore structure of HSGC-x supports could be successfully tuned via the variation of ball-milling time. Ru nanoparticles of different Ba-Ru-K/HSGC-x catalysts are homogeneously distributed on the supports with the particle sizes ranging from 1.6 to 2.0 nm. The graphitic degree of the support is closely related to its facile electron transfer capability and so plays an important role in improving the intrinsic catalytic performance of Ba-Ru-K/HSGC-x catalyst.  相似文献   
962.
An unsymmetrical compound, 2,2,3-triphenylpropanoic acid (TPPA), was successfully prepared from phenyllithium, 1,1-diphenylethylene (DPE), gas carbon dioxide (CO2), and aqueous standard solution of hydrochloric acid with LiCl deprivation. Characterization of the compound was performed by 1H and 13C nuclear magnetic resonance (NMR) spectroscopy. The polymerization of methyl methacrylate (MMA) was performed in the presence of TPPA at 95 °C. The free radicals obtained were characterized by ultra-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry (UPLC/Q-TOF MS). Gel permeation chromatography (GPC) traces of the average molecular weight of poly(MMA) (PMMA) showed a series of translations with increasing time. The average molecular weight of PMMA indicated narrow polydispersity, and an approximately linear relationship was found between ln ([M]0/[M]) and polymerization time.
Figure
?  相似文献   
963.
Functional star-shaped 4-arm poly(ethylene glycol)-b-poly[(ε-caprolactone-co-γ-amino-ε-caprolactone)] (4-arm PEG-b-P(CL-co-ACL) was synthesized through ring-opening polymerization. The structure of the copolymer was confirmed by 1H NMR, Fourier transform infrared spectroscopy (FTIR), and gel permeation chromatography (GPC). To further understand the copolymers, the difference of the conversion rate between ε-caprolactone (CL) and γ-(carbamic acid benzyl ester)-ε-caprolactone (CABCL) and the detailed deprotection condition were studied. The thermal property of the copolymer was analyzed by WAXR and differential scanning calorimetry (DSC), which demonstrated that the thermal property could be well adjusted. The pH-responsive behavior of the copolymers was studied in detail by dynamic light scattering (DLS), pH titration, and pyrene fluorescence methods, which indicated that it could form micelles and exhibit pH responsibility. Moreover, the copolymer was nontoxic and had good biocompatibility according to the results by 3-(4,5)-dimethylthiahiazo (-z-y1)-3,5-di-phenytetrazoliumromide (MTT) assay.  相似文献   
964.
Two distinctive block copolymers protected gold nanoparticles (AuNPs) were prepared with poly(methylacrylic acid)-block-poly(N-isopropylacrylamide) (SH-PMAA64-b-PNIPAM35) and poly (N-isopropylacrylamide)-block-poly(methylacrylic acid) (SH-PNIPAM40-b- PMAA60) through strong gold-sulfur bonding. The hybrid NPs have a pH-responsive inner shell (or corona) and a thermo-responsive corona (or inner shell) due to different location relations of the PNIPAM and PMAA on the surface of AuNPs. Then, the aggregation behaviors, as well as the changes of optical properties, of two hybrid NPs were compared in response to both stimuli. The results showed the obvious inter-particle aggregation caused by the phase transition for hydrophobic coronal polymer. However, the particles of hydrophilic corona layer retained good dispersion and the pH-responsive or thermo-responsive characteristics of shell layer made relatively minor changes.  相似文献   
965.
Stable emulsions of a core–shell acrylic copolymer (non-crosslinkable V0, and crosslinkable V2, V4, V6, and V8, where the numbers indicate the wt% of crosslinking agent based on the total acrylate monomer content) containing butyl acrylate (BA, 45 wt%), glycidyl methacrylate (GMA, 45 wt%), heptadecafluorodecyl methacrylate (PFA, 10 wt%), and various contents of crosslinking agent (vinyltriethoxysilane, VTES) were synthesized using a three-stage seeded emulsion polymerization process with a small amount of surfactant. The average particle size and viscosity of emulsions increased significantly with increasing VTES content. This study examined the effects of the VTES content on the surface/mechanical properties of self-crosslinked copolymer film samples containing a fixed acrylate monomer content to find the optimum VTES content. XPS showed that the film–air surface of the copolymer samples had a higher fluorine/silicone content than the film–dish interface. The tensile strength/modulus, thermal stability, and two Tgs (α and β Tgs) of the film samples increased significantly with increasing VTES content. The contact angle of the film samples increased with increasing VTES content up to approximately 6 wt%, and then decreased slightly. The optimum VTES content was approximately 6 wt% based on the total acrylate monomer content to obtain a high water/oil repellent coating material (V6) with the highest water/methylene iodide-contact angles (118.2°/81.8°) and lowest surface energy (18.4 mN/m).  相似文献   
966.
Three Ru(II) polypyridyl complexes [Ru(dmb)2(HMSPIP)](ClO4)2 (1), [Ru(phen)2(HMSPIP)](ClO4)2 (2) and [Ru(dmp)2(HMSPIP)](ClO4)2 (3) were synthesized and characterized. The cytotoxicity in vitro, apoptosis, cell cycle arrest, reactive oxygen species and mitochondrial membrane potential were assayed. The IC50 values of complexes 1, 2 and 3 toward BEL-7402, A549, MG-63 and SK-BR-3 cell lines ranged from 10.9 ± 1.6 to 42.0 ± 3.4 μM. Complexes 1, 2 and 3 can effectively induce apoptosis and inhibit the growth of BEL-7402 cells at the G2/M phase. These complexes can enhance the level of reactive oxygen species and induce decrease in the mitochondrial membrane potential. Additionally, complex 2 can down-regulate the expression of antiapoptotic protein of Bcl-2 protein and up-regulate the levels of proapoptotic protein Bim in BEL-7402 cells.  相似文献   
967.
Synthesis of fully conjugated cyclophanes containing large-size polycyclic aromatics is challenging. Now, three benzidine-linked, hexa-peri-hexabenzocoronene (superbenzene)-based ortho-, para-, and meta-cyclophanes are synthesized through intermolecular Yamamoto coupling reaction of structurally pre-organized precursors. Subsequent oxidative dehydrogenation gave the corresponding quinoidal benzidine-linked cyclophanes. Their geometries were confirmed by X-ray crystallographic analysis and their electronic properties were investigated by electronic absorption, cyclic voltammetry, and DFT calculations. The quinoidal benzidine-linked cyclophanes show thermally populated paramagnetic activity with a relatively large singlet-triplet energy gap. Two enantiomers for the ortho-cyclophanes ( 1-NH and 1-N ) were isolated and their chiral figure-of-eight macrocyclic structures were identified. The cage-like cyclophanes 2-NH and 3-NH with concave surface can selectively encapsulate fullerene C70.  相似文献   
968.
Redox homeostasis is one of the main reasons for reactive oxygen species (ROS) tolerance in hypoxic tumors, limiting ROS-mediated tumor therapy. Proposed herein is a redox dyshomeostasis (RDH) strategy based on a nanoplatform, FeCysPW@ZIF-82@CAT Dz, to disrupt redox homeostasis, and its application to improve ROS-mediated hypoxic tumor therapy. Once endocytosed by tumor cells, the catalase DNAzyme (CAT Dz) loaded zeolitic imidazole framework-82 (ZIF-82@CAT Dz) shell can be degraded into Zn2+ as cofactors for CAT Dz mediated CAT silencing and electrophilic ligands for glutathione (GSH) depletion under hypoxia, both of which lead to intracellular RDH and H2O2 accumulation. These “disordered” cells show reduced resistance to ROS and are effectively killed by ferrous cysteine-phosphotungstate (FeCysPW) induced chemodynamic therapy (CDT). In vitro and in vivo data demonstrate that the pH/hypoxia/H2O2 triple stimuli responsive nanocomposite can efficiently kill hypoxic tumors. Overall, the RDH strategy provides a new way of thinking about ROS-mediated treatment of hypoxic tumors.  相似文献   
969.
Rechargeable aqueous zinc batteries (RAZB) have been re-evaluated because of the superiority in addressing safety and cost concerns. Nonetheless, the limited lifespan arising from dendritic electrodeposition of metallic Zn hinders their further development. Herein, a metal–organic framework (MOF) was constructed as front surface layer to maintain a super-saturated electrolyte layer on the Zn anode. Raman spectroscopy indicated that the highly coordinated ion complexes migrating through the MOF channels were different from the solvation structure in bulk electrolyte. Benefiting from the unique super-saturated front surface, symmetric Zn cells survived up to 3000 hours at 0.5 mA cm−2, near 55-times that of bare Zn anodes. Moreover, aqueous MnO2–Zn batteries delivered a reversible capacity of 180.3 mAh g−1 and maintained a high capacity retention of 88.9 % after 600 cycles with MnO2 mass loading up to 4.2 mg cm−2.  相似文献   
970.
Control of selectivity is one of the central topics in organic chemistry. Although unprecedented alkoxyl-radical-induced transformations have drawn a lot of attention, compared to selective C−H activation, selective radical O−H activation remains less explored. Herein, we report a novel selective radical O−H activation strategy of diols by combining spatial effects with proton-coupled electron transfer (PCET). It was found that DMSO is an essential reagent that enables the regioselective transformation of diols. Mechanistic studies indicated the existence of the alkoxyl radical and the selective interaction between DMSO and hydroxyl groups. Moreover, the distal C−C cleavage was realized by this selective alkoxyl-radical-initiation protocol.  相似文献   
[首页] « 上一页 [92] [93] [94] [95] [96] 97 [98] [99] [100] 下一页 » 末  页»
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号