首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   19905篇
  免费   2403篇
  国内免费   1618篇
化学   10658篇
晶体学   185篇
力学   816篇
综合类   67篇
数学   1776篇
物理学   4675篇
综合类   5749篇
  2024年   75篇
  2023年   415篇
  2022年   609篇
  2021年   707篇
  2020年   789篇
  2019年   642篇
  2018年   573篇
  2017年   513篇
  2016年   777篇
  2015年   852篇
  2014年   975篇
  2013年   1276篇
  2012年   1456篇
  2011年   1461篇
  2010年   1026篇
  2009年   1032篇
  2008年   1214篇
  2007年   1096篇
  2006年   933篇
  2005年   917篇
  2004年   660篇
  2003年   570篇
  2002年   609篇
  2001年   509篇
  2000年   452篇
  1999年   553篇
  1998年   390篇
  1997年   344篇
  1996年   354篇
  1995年   350篇
  1994年   303篇
  1993年   267篇
  1992年   218篇
  1991年   179篇
  1990年   190篇
  1989年   141篇
  1988年   130篇
  1987年   84篇
  1986年   57篇
  1985年   47篇
  1984年   40篇
  1983年   17篇
  1982年   16篇
  1981年   20篇
  1980年   12篇
  1979年   8篇
  1976年   10篇
  1975年   11篇
  1971年   7篇
  1969年   6篇
排序方式: 共有10000条查询结果,搜索用时 609 毫秒
941.
Three novel H2O2‐activated aromatic nitrogen mustard prodrugs ( 6 – 8 ) are reported. These compounds contain a DNA alkylating agent connected to a H2O2‐responsive trigger by different electron‐withdrawing linkers so that they are inactive towards DNA but can be triggered by H2O2 to release active species. The activity and selectivity of these compounds towards DNA were investigated by measuring DNA interstrand cross‐link (ICL) formation in the presence or absence of H2O2. An electron‐withdrawing linker unit, such as a quaternary ammonia salt ( 6 ), a carboxyamide ( 7 ), and a carbonate group ( 8 ), is sufficient to deactivate the aromatic nitrogen mustard resulting in less than 1.5 % cross‐linking formation. However, H2O2 can restore the activity of the effectors by converting a withdrawing group to a donating group, therefore increasing the cross‐linking efficiency (>20 %). The stability and reaction sites of the ICL products were determined, which revealed that alkylation induced by 7 and 8 not only occurred at the purine sites but also at the pyrimidine site. For the first time, we isolated and characterized the monomer adducts formed between the canonical nucleosides and the aromatic nitrogen mustard ( 15 ) which supported that nitrogen mustards reacted with dG, dA, and dC. The activation mechanism was studied by NMR spectroscopic analysis. An in vitro cytotoxicity assay demonstrated that compound 7 with a carboxyamide linker dramatically inhibited the growth of various cancer cells with a GI50 of less than 1 μM , whereas compound 6 with a charged linker did not show any obvious toxicity in all cell lines tested. These data indicated that a neutral carboxyamide linker is preferable for developing nitrogen mustard prodrugs. Our results showed that 7 is a potent anticancer prodrug that can serve as a model compound for further development. We believe these novel aromatic nitrogen mustards will inspire further and effective applications.  相似文献   
942.
Peptides, the fundamental building units of biological systems, are chiral in molecular scale as well as in spatial conformation. Shells are exquisite examples of well‐defined chiral structures produced by natural biomineralization. However, the fundamental mechanism of chirality expressed in biological organisms remains unclear. Here, we present a system that mimics natural biomineralization and produces enantiopure chiral inorganic materials with controllable helicity. By tuning the hydrophilicity of the amphiphilic peptides, the chiral morphologies and mesostructures can be changed. With decreasing hydrophilicity of the amphiphilic peptides, we observed that the nanostructures changed from twisted nanofibers with a hexagonal mesostructure to twisted nanoribbons with a lamellar mesostructure, and the extent of the helicity decreased. Defining the mechanism of chiral inorganic materials formed from peptides by noncovalent interactions can improve strategies toward the bottom‐up synthesis of nanomaterials as well as in the field of bioengineering.  相似文献   
943.
Sensitive and rapid detection of multiple analytes and the collection of components from complex samples are important in fields ranging from bioassays/chemical assays, clinical diagnosis, to environmental monitoring. A convenient strategy for creating magnetically encoded luminescent CdTe@SiO2@n Fe3O4 composite nanoparticles, by using a layer‐by‐layer self‐assembly approach based on electrostatic interactions, is described. Silica‐coated CdTe quantum dots (CdTe@SiO2) serve as core templates for the deposition of alternating layers of Fe3O4 magnetic nanoparticles and poly(dimethyldiallyl ammonium chloride), to construct CdTe@SiO2@n Fe3O4 (n=1, 2, 3, …?) composite nanoparticles with a defined number (n) of Fe3O4 layers. Composite nanoparticles were characterized by zeta‐potential analysis, fluorescence spectroscopy, vibrating sample magnetometry, and transmission electron microscopy, which showed that the CdTe@SiO2@n Fe3O4 composite nanoparticles exhibited excellent luminescence properties coupled with well‐defined magnetic responses. To demonstrate the utility of these magnetically encoded nanoparticles for near‐simultaneous detection and separation of multiple components from complex samples, three different fluorescently labeled IgG proteins, as model targets, were identified and collected from a mixture by using the CdTe@SiO2@n Fe3O4 nanoparticles.  相似文献   
944.
The correspondence between triplet location effect and host‐localized triplet–triplet annihilation and triplet–polaron quenching effects was performed on the basis of a series of naphthyldiphenylamine (DPNA)‐modified phosphine oxide hosts. The number and ratio of DPNA and diphenylphosphine oxide was adjusted to afford symmetrical and unsymmetrical molecular structures and different electronic environments. As designed, the first triplet (T1) states were successfully localized on the specific DPNA chromophores. Owing to the meso‐ and multi‐insulating linkages, identical optical properties and comparable electrical performance was observed, including the same first singlet (S1) and T1 energy levels to support the similar singlet and triplet energy transfer and the close frontier molecular orbital energy levels. This established the basis of rational investigation on T1 location effect without interference from other optoelectronic factors.  相似文献   
945.
Persistent luminescence nanoparticles (PLNPs) hold great promise for the detection and imaging of biomolecules. Herein, we have demonstrated a novel nanoprobe, based on the manganese dioxide (MnO2)‐modified PLNPs, that can detect and image glutathione in living cells and in vivo. The persistent luminescence of the PLNPs can be efficiently quenched by the MnO2 nanosheets. In the presence of glutathione (GSH), MnO2 was reduced to Mn2+ and the luminescence of PLNPs can be restored. The persistent luminescence property can allow detection and imaging without external excitation and avoid the background noise originating from the in situ excitation. This strategy can offer a promising platform for detection and imaging of reactive species in living cells or in vivo.  相似文献   
946.
A ruthenium‐catalyzed direct C7 amidation of indoline C?H bonds with sulfonyl azides was developed. This procedure allows the synthesis of a variety of 7‐amino‐substituted indolines, which are useful in pharmaceutical. The good functional tolerances, as well as the mild conditions, are prominent feature of this method.  相似文献   
947.
Taking tetraoxacalix[2]arene[2]triazine as a functionalization platform, a series of new amphiphilic molecules were synthesized in 18 to 53 % yields by using a fragment coupling protocol. These amphiphilic molecules self‐assembled into stable vesicles in a mixture of THF and water, with the surface of the vesicles engineered by electron‐deficient cavities. Various anions are able to selectively influence the size of self‐assembled vesicles, following the order of F?<ClO4?<SCN?<BF4?<Br?<Cl?<NO3?, as revealed by DLS measurements. Such a sequence was independent with the hydration cost and in agreement with the binding strength of anions with tetraoxacalix[2]arene[2]triazine host molecule, indicating that the anion–π interaction most probably competed over other possible weak interactions and accounted for this interesting selectivity. In addition, the chloride permeation process across the membrane of the vesicles was also preliminarily studied by means of fluorescent experiments. This study, in addition to providing the potentiality of heteracalixaromatics as new models to construct functional vesicles, opens a new avenue to study the anion–π interactions in aqueous and also potentially in living systems.  相似文献   
948.
Cellulose-derived materials are usually characterized by sophisticated structures, leading to unique and multiple functions, which have been a source of inspiration for the fabrication of a wide variety of nanocomposites. Cellulose nanocrystals/poly(acrylamide) (CNCs/PAM) nanocomposite hydrogels were synthesized via in situ polymerization in the CNC suspension. The cellulose from pulp fiber under different sulfuric acid hydrolysis conditions, examined by conductometric titration and transmission electron microscopy, was applied to study how the effects of the surface charge and aspect ratio affect CNCs’ mechanical reinforcement in nanocomposites. The results indicated that the higher surface charge concentration resulted in better dispersibility in aqueous suspension, leading to a more efficient energy dissipation process. The CNC reinforcement behavior followed the percolation model where the greater aspect ratio of CNC contributed to higher mechanical properties. The preferential adsorption of poly(ethylene glycol) (PEG) on the CNC surface was characterized by zeta potential measurements where the fracture strength and fracture elongation of nanocomposites decreased with increasing PEG concentration. The adsorption of PEG on the CNC surface occupied the active sites for polymer chain propagation, which hindered the PAM cross-linking effect on the CNC surface and decreased the cross-linking density of the network.  相似文献   
949.
Chirality is vital in chemistry. Its importance in atomic clusters has been recognized since the discovery of the first chiral fullerene, the D2 symmetric C76. 1 A number of gold clusters have been found to be chiral, 2 raising the possibility to use them as asymmetric catalysts. The discovery of clusters with enantiomeric structures is essential to design new chiral materials with tailored chemical and physical properties. 3 Herein we report the first inherently chiral boron cluster of [B30]? in a joint photoelectron spectroscopy and theoretical study. The most stable structure of [B30]? is found to be quasiplanar with a hexagonal hole. Interestingly, a pair of enantiomers arising from different positions of the hexagonal hole are found to be degenerate in our global minimum searches and both should co‐exist experimentally because they have identical electronic structures and give rise to identical simulated photoelectron spectra.  相似文献   
950.
Supercharged proteins are a new class of functional proteins with exceptional stability and potent ability to deliver bio‐macromolecules into cells. As a proof‐of‐principle, a novel application of supercharged proteins as a versatile biosensing platform for nucleic acid detection and epigenetics analysis is presented. Taking supercharged green fluorescent protein (ScGFP) as the signal reporter, a simple turn‐on homogenous method for DNA detection has been developed based on the polyionic nanoscale complex of ScGFP/DNA and toehold strand displacement. This assay shows high sensitivity and potent ability to detect single‐base mismatch. Furthermore, combined with bisulfite conversion, this ScGFP‐based assay was further applied to analyze site‐specific DNA methylation status of genomic DNA extracted from real human colon carcinoma tissue sample with ultrahigh sensitivity (4 amol methylated DNA).  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号