首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   535篇
  免费   2篇
化学   151篇
晶体学   5篇
力学   12篇
数学   8篇
物理学   54篇
综合类   307篇
  2019年   3篇
  2018年   5篇
  2017年   3篇
  2016年   10篇
  2015年   1篇
  2014年   6篇
  2013年   11篇
  2012年   11篇
  2011年   14篇
  2010年   5篇
  2009年   4篇
  2008年   27篇
  2007年   33篇
  2006年   33篇
  2005年   46篇
  2004年   54篇
  2003年   44篇
  2002年   46篇
  2001年   38篇
  2000年   51篇
  1999年   20篇
  1998年   4篇
  1997年   2篇
  1996年   2篇
  1995年   2篇
  1994年   1篇
  1993年   2篇
  1992年   1篇
  1991年   3篇
  1990年   1篇
  1989年   4篇
  1988年   1篇
  1987年   1篇
  1986年   1篇
  1985年   3篇
  1984年   2篇
  1982年   2篇
  1981年   2篇
  1980年   3篇
  1979年   1篇
  1978年   5篇
  1976年   2篇
  1975年   4篇
  1974年   8篇
  1973年   5篇
  1972年   2篇
  1971年   1篇
  1970年   1篇
  1967年   1篇
  1937年   2篇
排序方式: 共有537条查询结果,搜索用时 15 毫秒
21.
22.
Para-hydroxy methylcinnamate is part of the cinnamate family of molecules. Experimental and computational studies have suggested conflicting non-radiative decay routes after photoexcitation to its S1(ππ*) state. One non-radiative decay route involves intersystem crossing mediated by an optically dark singlet state, whilst the other involves direct intersystem crossing to a triplet state. Furthermore, irrespective of the decay mechanism, the lifetime of the initially populated S1(ππ*) state is yet to be accurately measured. In this study, we use time-resolved ion-yield and photoelectron spectroscopies to precisely determine the S1(ππ*) lifetime for the s-cis conformer of para-hydroxy methylcinnamate, combined with time-dependent density functional theory to determine the major non-radiative decay route. We find the S1(ππ*) state lifetime of s-cis para-hydroxy methylcinnamate to be ∼2.5 picoseconds, and the major non-radiative decay route to follow the [1ππ*→1nπ*→3ππ*→S0] pathway. These results also concur with previous photodynamical studies on structurally similar molecules, such as para-coumaric acid and methylcinnamate.  相似文献   
23.
24.
25.
26.
27.
28.
29.
30.
The eight unique EPR signals at the first and second harmonies of the Zeeman modulation are sensitive to the very slow rotational diffusion of spin labeled biomolecules when these signals are recorded under conditions of microwave saturation and finite Zeeman modulation frequencies and amplitudes. Such saturation transfer sensitive spectra have been employed to study contractile proteins, hemoproteins, enzymes, etc. When these species or their supramolecular complexes are characterized by correlation times in the range 10?8 to 10?3 s. Published computer simulation reproduce quite well spectra at the longer correlation times and the general sensitivity of spectra to changing rotational correlation time; however, agreement between experimental and calculated spectral shapes is poor for rotational correlation time on the order of 10?7 s and the dependence of experimental spectra upon microwave field intensity is not reproduced. In the present communication we show that the previously reported discrepancy between experimental and calculated spectra is due to the neglect of higher order cou magnetic interactions modulated by the molecular motion and involving the spin-microwave field interaction. When these “pseudodiagonal” terms of the spin density equation are explicitly included, experimental spectral lineshapes, spectral line positions, and the ratios of amplitudes of the various signal components are quantitatively reproduced. Plots of the ratios of the heights of the high and low field spectral extrema suggest a procedure for calibrating microwave field intensities as these ratios are found experimentally and theoretically to be nearly a linear function of microwave field intensity for intensities in the range 0.15 to 0.5 G. The separation of low and high field extrema was observed to increase with increasing microwave field intensity, suggesting the need to carefully consider saturation effects when determining rotational correlation times from this separation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号