首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6305篇
  免费   348篇
  国内免费   53篇
化学   4596篇
晶体学   44篇
力学   111篇
数学   628篇
物理学   1101篇
综合类   226篇
  2023年   27篇
  2022年   85篇
  2021年   117篇
  2020年   94篇
  2019年   110篇
  2018年   97篇
  2017年   91篇
  2016年   199篇
  2015年   186篇
  2014年   219篇
  2013年   375篇
  2012年   442篇
  2011年   527篇
  2010年   314篇
  2009年   239篇
  2008年   410篇
  2007年   364篇
  2006年   378篇
  2005年   312篇
  2004年   289篇
  2003年   245篇
  2002年   220篇
  2001年   117篇
  2000年   109篇
  1999年   78篇
  1998年   55篇
  1997年   52篇
  1996年   62篇
  1995年   53篇
  1994年   50篇
  1993年   32篇
  1992年   37篇
  1991年   30篇
  1990年   42篇
  1989年   37篇
  1988年   29篇
  1987年   32篇
  1986年   24篇
  1985年   45篇
  1984年   32篇
  1983年   24篇
  1982年   27篇
  1981年   30篇
  1980年   21篇
  1979年   34篇
  1978年   19篇
  1977年   24篇
  1976年   24篇
  1975年   20篇
  1973年   29篇
排序方式: 共有6706条查询结果,搜索用时 15 毫秒
141.
Glypican-3 (GPC3) encodes a cell-surface heparan- sulfate proteoglycan and its expression is frequently silenced in ovarian cancer, mesotheliomas, and breast cancer cell lines and ectopic expression of GPC3 inhibited the growth of these cells, suggesting that GPC3 plays a negative role in cell proliferation. In contrast, up-regulation of GPC3 is often observed in hepatoma, neuroblastoma, and Wilms' tumor. Whether GPC3 plays the same growth inhibitory role in these tumors remains to be studied. Here we report that antisense-mediated knockdown of GPC3 in the HepG2 hepatoma cells significantly promotes the growth of hepatoma cells. In addition, we show that this growth promotion is independent of insulin-like growth factor 2 (IGF2) signaling. Our data suggest that GPC3 plays a growth-suppressing role in hepatoma and provide cell biological evidence inconsistent with the hypothesis that GPC3 acts as a growth suppressor by downregulating IGF2.  相似文献   
142.
Here we present generalized methods for chemically modifying the surface of a viral protein cage; this exploits the chemistry of native and engineered surface exposed functional groups for multivalent presentation of ligands.  相似文献   
143.
Aligned silicon carbide nanowires were synthesized directly from the silicon substrates via a novel catalytic reaction with a methane-hydrogen mixture at 1,100 degrees C, with a mean diameter of 40 nm and length of 500 microm; they consist of a single-crystalline zinc blende structure crystal in the [111] growth direction; X-ray diffraction, Raman, and infrared spectroscopy confirm the synthesis of high-purity silicon carbide nanowires.  相似文献   
144.
The ionic conductivity of polymer electrolytes and their interfacial contact with dye-attached TiO2 particles were enhanced markedly by the addition of amorphous oligomer into polymer electrolytes, resulting in very high overall energy conversion efficiency.  相似文献   
145.
Highly active catalysts for copolymerization have been prepared by the precipitation of MgCl2/ToCl4 complex with or without high surface area silica. Copolymerization of ethylene and 1-butene has been tested by using the prepared catalysts at various concentrations of 1-butene. The catalytic activities are 20–80 kg/g Ti h. The rate of copolymerization is strongly affected by the addition of 1-butene. The decay rate of copolymerization is first order with respect to time. Analyses of copolymers with solvent extraction, DSC, IR, XRD, and NMR were performed. Ethylene reactivity ratio (k11) for TiCl4/MgCl2/THF catalyst is calculated to be about 26 by NMR spectrum. © 1994 John Wiley & Sons, Inc.  相似文献   
146.
Abstract— Photosensitized pyrimidine dimer splitting characterizes the enzymatic process of DNA repair by the DNA photolyases. Possible pathways for the enzymatic reaction include photoinduced electron transfer to or from the dimer. To study the mechanistic photochemistry of splitting by a sensitizer representative of excited state electron donors, a compound in which an indole is covalently linked to a pyrimidine dimer has been synthesized. This compound allowed the quantitative measurement of the quantum efficiency of dimer splitting to be made without uncertainties resulting from lack of extensive preassociation of the unlinked dimer and sensitizer free in solution. Irradiation of the compound with light at wavelengths absorbed only by the indolyl group (approximately 280 nm) resulted in splitting of the attached dimer. The quantum yield of splitting of the linked system dissolved in N20-saturated aqueous solution was found to be 0.04 ± 0.01. The fluorescence typical of indoles was almost totally quenched by the attached dimer. A splitting mechanism in which an electron is efficiently transferred intramolecularly from photoexcited indole to ground state dimer has been formulated. The surprisingly low quantum yield of splitting has been attributed to inefficient splitting of the resulting dimer radical anion. Insights gained from this study have important mechanistic implications for the analogous reaction effected by the DNA photolyases.  相似文献   
147.
Dagnall RM  West TS  Young P 《Talanta》1966,13(6):803-808
The adaptation of a conventional atomic-absorption/flameemission spectrophotometer to the measurement of atomic-fluorescence in an air-acetylene flame is described. The determination of cadmium on the same instrument by both atomic-fluorescence and absorption shows that, even with a rather simple and inefficient means of exciting and measuring fluorescence, results can be obtained which indicate that the fluorescence technique is considerably more sensitive than atomic-absorbance and is equally free from inter-element interference.  相似文献   
148.
Until recently, vascular endothelial growth factor (VEGF) was the only growth factor proven to be specific and critical for blood vessel formation. Other long-known factors, such as the fibroblast growth factors (FGFs), platelet-derived growth factor, or transforming growth factor-beta, had profound effects in endothelial cells. But such factors were nonspecific, in that they could act on many other cells, and it seemed unlikely that these growth factors would be effective targets for treatment of endothelial cell diseases. A recently discovered endothelial cell specific growth factor, angiopoietin, has greatly contributed to our understanding of the development, physiology, and pathology of endothelial cells (Davis et al., 1996; Yancopoulos et al., 2000). The recent studies that identified and characterized the physiological and pathological roles of angiopoietin have allowed us to widen and deepen our knowledge about blood vessel formation and vascular endothelial function. Therefore, in this review, we describe the biomedical significance of these endothelial cell growth factors, the angiopoietins, in the vascular system under normal and pathological states.  相似文献   
149.
In this paper, we report surface-initiated d(A-T) polymerization by Taq DNA polymerase as a method for constructing DNA-tethered surfaces using an enzyme. The enzymatic polymerization was conducted successfully via two steps: tethering of oligo d(A-T)s onto the surface presenting carboxylic acids by amide coupling and surface-initiated polymerization using Taq DNA polymerase. In this enzymatic polymerization process, the design and construction of carboxylic acid-presenting surfaces were found to be an important factor: DNA growth did not occur on the gold surface coated only with the self-assembled monolayer (SAM) of 16-mercaptohexadecanoic acid (MHDA), but effectively proceeded on the surfaces presenting mixed SAMs of MHDA and 1-pentadecanethiol. The coupling of oligo d(A-T)s and the subsequent DNA polymerization reaction were characterized by polarized infrared external reflectance spectroscopy, ellipsometry, X-ray photoelectron spectroscopy, and atomic force microscopy.  相似文献   
150.
The chromatographic separation of lithium isotopes was investigated by chemical exchange with the recently synthesized polymer-bound dibenzo pyridino diamide azacrown (DBPDA) and reduced dibenzo pyridino diamide azacrown (RDBPDA). Column chromatography was employed for the determination of the effect of solvents and ligand conformation on the separation coefficients. The maximum separation coefficients, , for the DBPDA and RDBPDA at 20.0±0.02°C with acetonitrile as eluent, were found to be 0.034±0.002 and 0.035±0.002, respectively. The isotope separation coefficient and adsorption capability of the lithium ion on the DBPDA and RDBPDA were only slightly dependent on ligand structure, but strongly dependent on the solvent. DBPDA and RDBPDA appeared to have almost the same value for the isotope separation coefficient of lithium.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号