首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   25420篇
  免费   3592篇
  国内免费   2478篇
化学   11981篇
晶体学   232篇
力学   876篇
综合类   133篇
数学   1735篇
物理学   6178篇
综合类   10355篇
  2024年   136篇
  2023年   634篇
  2022年   942篇
  2021年   1087篇
  2020年   1119篇
  2019年   960篇
  2018年   809篇
  2017年   808篇
  2016年   1083篇
  2015年   1347篇
  2014年   1560篇
  2013年   1823篇
  2012年   2086篇
  2011年   2068篇
  2010年   1532篇
  2009年   1580篇
  2008年   1638篇
  2007年   1437篇
  2006年   1262篇
  2005年   1076篇
  2004年   760篇
  2003年   643篇
  2002年   630篇
  2001年   535篇
  2000年   479篇
  1999年   529篇
  1998年   432篇
  1997年   395篇
  1996年   352篇
  1995年   310篇
  1994年   273篇
  1993年   229篇
  1992年   217篇
  1991年   173篇
  1990年   123篇
  1989年   111篇
  1988年   88篇
  1987年   64篇
  1986年   53篇
  1985年   44篇
  1984年   22篇
  1983年   7篇
  1982年   8篇
  1981年   4篇
  1980年   4篇
  1979年   2篇
  1976年   2篇
  1971年   2篇
  1966年   2篇
  1957年   3篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
971.
p-Aminothiophenol (pATP) functionalized multi-walled carbon nanotubes (MWCNTs) have been demonstrated as an efficient pH sensor for living cells. The proposed sensor employs gold/silver core-shell nanoparticles (Au@Ag NPs) functionalized MWCNTs hybrid structure as the surface-enhanced Raman scattering (SERS) substrate and pATP molecules as the SERS reporters, which possess a pH-dependent SERS performance. By using MWCNTs as the substrate to be in a state of aggregation, the pH sensing range could be extended to pH 3.0~14.0, which is much wider than that using unaggregated Au@Ag NPs without MWCNTs. Furthermore, the pH-sensitive performance was well retained in living cells with a low cytotoxicity. The developed SERS-active MWCNTs-based nanocomposite is expected to be an efficient intracellular pH sensor for bio-applications.  相似文献   
972.
A facile nonaqueous solution route for the fabrication of NdOCl nanostructures based on a ligand‐exchange protocol and further thermal decomposition in organic medium, using only chloride salt as the neodymium source, is reported and the formation mechanism is proposed. The morphology, crystal structure, and chemical compositions of the sample were characterized at the nanoscale. XRD results and selected‐area electron diffraction patterns show that the sample is purely tetragonal NdOCl without any other impurity phases. TEM results show that the NdOCl nanostructures have a well‐defined flowerlike shape, which looks like a chrysanthemum just about to bloom. Magnetization measurements reveal that the NdOCl nanoflowers show room‐temperature ferromagnetism. The photoluminescence properties were also studied. These results are significant for fundamental research and promising applications of rare‐earth‐based nanostructures.  相似文献   
973.
The PPh3‐catalyzed ring‐expansion reaction of sulfamate‐derived cyclic imines with acetylenedicarboxylates has been developed. The reaction works quite efficiently under very mild conditions to afford benzo[g][1,2,3]oxathiazocine‐4,5‐dicarboxylate 2,2‐dioxide derivatives in high yields.  相似文献   
974.
The origin of the catalytic power of enzymes with a meta-stable native state,e.g.molten globular state,is an unsolved challenging issue in biochemistry.To help understand the possible differences between this special class of enzymes and the typical ones,we report here computer simulations of the catalysis of both the well-folded wild-type and the molten globular mutant of chorismate mutase.Using the ab initio quantum mechanical/molecular mechanical minimum free-energy path method,we determined the height of reaction barriers that are in good agreement with experimental measurements.Enzyme-substrate interactions were analyzed in detail to identify factors contributing to catalysis.Computed angular order parameters of backbone N–H bonds and side-chain methyl groups suggested site-specific,non-uniform rigidity changes of the enzymes during catalysis.The change of conformational entropy from the ground state to the transition state revealed distinctly contrasting entropy/enthalpy compensations in the dimeric wild-type enzyme and its molten globular monomeric variant.A unique catalytic strategy was suggested for enzymes that are natively molten globules:some may possess large conformational flexibility to provide strong electrostatic interactions to stabilize the transition state of the substrate and compensate for the entropy loss in the transition state.The equilibrium conformational dynamics in the reactant state were analyzed to quantify their contributions to the structural transitions enzymes needed to reach the transition states.The results suggest that large-scale conformational dynamics make important catalytic contributions to sampling conformational regions in favor of binding the transition state of substrate.  相似文献   
975.
Investigation into a hydrothermal reaction system with transition‐metal (TM) ions, 1,4‐bis(1,2,4‐triazol‐1‐lmethyl)benzene (BBTZ) and various charge‐tunable Keggin‐type polyoxometalates (POMs) led to the preparation of four new entangled coordination networks, [CoII(HBBTZ)(BBTZ)2.5][PMo12O40] ( 1 ), [CuI(BBTZ)]5[BW12O40] ? H2O ( 2 ), [CuII(BBTZ)]3[AsWV3WVI9O40] ? 10 H2O ( 3 ), and [CuII5(BBTZ)7(H2O)6][P2W22Cu2O77(OH)2] ? 6 H2O ( 4 ). All compounds were characterized by using elemental analysis, IR spectroscopy, thermogravimetric analysis, powder X‐ray diffraction, and single‐crystal X‐ray diffraction. The mixed valence of W centers in compound 3 was further confirmed by using XPS spectroscopy and bond‐valence sum calculations. In the structural analysis, the entangled networks of 1 – 4 demonstrate zipper‐closing packing, 3D polythreading, 3D polycatenation, and 3D self‐penetration, respectively. Moreover, with the enhancement of POM negative charges and the use of different TM types, the number of nodes in the coordination networks of 1 – 4 increased and the basic metal–organic building motifs changed from a 1D zipper‐type chain (in 1 ) to a 2D pseudorotaxane layer (in 2 ) to a 3D diamond‐like framework (in 3 ) and finally to a 3D self‐penetrating framework (in 4 ). The photocatalytic properties of compounds 1 – 4 for the degradation of methylene blue under UV light were also investigated; all compounds showed good catalytic activity and the photocatalytic activity order of Keggin‐type species was initially found to be {XMo12O40}>{XW12O40}>{XW12?nTMnO40}.  相似文献   
976.
The novel aminoporphyrin‐end‐functionalized poly(N‐isopropylacrylamide) (PNIPAM) polymer H2N‐TPP‐PNIPAM (TPP=5,10,15,20‐tetraphenyl‐21H,23H‐porphyrin) behaves as a multifunctional platform that displays a photodynamic effect, thermosensitivity, and fluorescence properties. The polymer was designed by using an asymmetrical aminoporphyrin (i.e., H2N‐TPP‐Cl) as the initiator for the atom‐transfer radical polymerization of N‐isopropylacrylamide (NIPAM). The polydispersity index (PDI) obtained by gel‐permeation chromatography indicated that the molecular‐weight distribution was narrow (1.09<PDI<1.27). The lower critical solution temperatures of H2N‐TPP‐PNIPAM showed a decreasing trend as the molecular weight was increased as a result of the incorporation of the porphyrin group at the end of the chain. The fluorescence spectra revealed the luminescent properties of the materials. The results of confocal laser scanning microscopy showed that the polymer could enter the cytoplasm through endocytosis. In addition, the multifunctional platform exhibited low toxicity against normal cells (L929) and cancer cells (Hela) and enhanced photodynamic activity towards HeLa cells, without significant necrocytosis towards L929 cells; as a result this material may be useful in the future for practical photodynamic therapy.  相似文献   
977.
A novel manganese coordination polymer, poly[(μ5‐thiophene‐3,4‐dicarboxylato)manganese(II)], [Mn(C6H2O4S)]n, was synthesized hydrothermally using 3,4‐thiophenedicarboxylate (3,4‐tdc2−) as the organic linker. The asymmetric unit of the complex contains an Mn2+ cation and one half of a deprotonated 3,4‐tdc2− anion, both residing on a twofold axis. Each Mn2+ centre is six‐coordinated by O atoms of bridging/chelating carboxylate groups from five 3,4‐tdc2− anions, forming a slightly distorted octahedron. The Mn2+ centres are bridged by 3,4‐tdc2− anions to give an infinite two‐dimensional layer which incorporates one‐dimensional Mn–O gridlike chains, and in which the 3,4‐tdc2− anion adopts a novel hexadentate chelating and μ5‐bridging coordination mode. The fully deprotonated 3,4‐tdc2− anion exhibits unexpected efficiency as a ligand towards the Mn2+ centres, which it coordinates through all of its carboxylate O atoms to provide the novel coordination mode. The IR spectrum of the complex is also reported.  相似文献   
978.
Raman spectra of iodine species confined in one‐dimensional elliptical channels of AlPO4‐11 (AEL) crystals have been studied from room temperature down to −196 °C. As temperature decreases, thermal fluctuations of individual iodine molecules confined in AEL channels are slowed down and they prefer to rotate to channel axis direction, which increases the population of iodine molecules along channel axis (i.e., lying molecules and chains). Such temperature‐driven orientation transformation of iodine molecules is found to be reversible upon heating up to room temperature. The experimental observations are in good agreement with our theoretical simulations by molecular dynamics on low density iodine‐filled AEL crystals. We thus provide a new way to modulate the orientation of iodine molecules in nanochannels, which may have implications in low‐temperature‐sensitive nanoscale devices. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
979.
Transformation optics, a recent geometrical design strategy of light manipulation with both ray trajectories and optical phase controlled simultaneously, promises an invisibility cloaking device that can render a macroscopic object invisible even to a scientific instrument measuring optical phase. Recent “carpet” cloaks have extended their cloaking capability to broadband frequency ranges and macroscopic scales, but they only demonstrated the recovery of ray trajectories after passing through the cloaks, while whether the optical phase would reveal their existence still remains unverified. In this paper, a phase‐preserved macroscopic visible‐light carpet cloak is demonstrated in a geometrical construction beyond two dimensions. As an extension of previous two‐dimensional (2D) macroscopic carpet cloaks, this almost‐three‐dimensional carpet cloak exhibits three‐dimensional (3D) invisibility for illumination near its center (i.e. with a limited field of view), and its ideal wide‐angle invisibility performance is preserved in multiple 2D planes intersecting in the 3D space. Optical path length is measured with a broadband pulsed‐laser interferometer, which provides unique experimental evidence on the geometrical nature of transformation optics.

  相似文献   

980.
分别通过试验研究了饱和与干燥大骨料混凝土试件在动态双轴受压状态下的强度特征.试验采用大型混凝土静、动态三轴液压伺服试验系统,设定了4个数量级的应变率(10-5、10-4、10-3、10-2 s-1)和5种应力比(0∶1、0.25∶1、0.50∶1、0.75∶1、1∶1).根据试验结果,分析了孔隙水对大骨料混凝土动态双轴极限抗压强度的影响,并提出了饱和大骨料混凝土动态受压破坏准则.研究表明,饱和大骨料试件在动态条件下的强度与干燥混凝土试件相比提高明显,而在准静态条件下有所降低.在相同应变率下,与单轴相比,双轴极限抗压强度在应力比为0.50∶1时最大.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号