首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   10篇
  免费   7篇
化学   1篇
物理学   10篇
综合类   6篇
  2024年   1篇
  2022年   1篇
  2021年   2篇
  2020年   1篇
  2019年   3篇
  2018年   1篇
  2016年   1篇
  2015年   5篇
  2014年   1篇
  2013年   1篇
排序方式: 共有17条查询结果,搜索用时 15 毫秒
11.
闭式等离子体可以克服等离子体隐身技术在开放环境中等离子体难以维持及能耗过大的问题。针对等离子体隐身应用,设计了一种封闭式的等离子体发生装置,选用微秒脉冲电源,以氩气为工质气体,在低气压环境下进行了放电实验。采用发射光谱法,测量了密闭腔体内部厚度方向上的Ar谱线强度,并将碰撞-辐射模型用于分析等离子体参数的分布规律。当放电参数确定时,给定电子温度和电子密度,可通过碰撞-辐射模型计算得到2p能级上的布居分布比值,将其与从光谱数据中得到的布居分布比值进行比较,当差异值最小时,即可确定相应的等离子体参数。通过对电子温度在1~5 eV范围内的2p9和2p1能级布居分布比值进行计算,分析了碰撞-辐射模型计算可能存在的误差。实验结果表明,在厚度方向上,封闭式腔体中的等离子体电子密度达到1011 cm-3量级且呈一定的梯度分布,但变化幅度不大,其分布情况有利于等离子体隐身技术的应用。  相似文献   
12.
装备表面覆盖的吸波涂层在长期使用后容易发生磨损、膨胀、老化等损伤,从而影响吸收性能。利用反射率、相位测量和微波成像技术,研究了这3种损伤模式及其对吸收性能的影响。首先制作了带有三种损伤类型的雷达吸波涂层和红外 雷达兼容吸波涂层样板,采用弓形法测量反射率和相位,采用雷达散射成像系统建立样板散射图像。通过实验结果和定性分析,发现所有类型的损伤都使涂层吸收性能恶化,其相应的吸收频带变窄,并随涂层的结构或吸波材料成分的变化而变化。其中,磨损损伤模式对这两种吸波涂层的影响最为严重,导致吸收能力急剧下降。  相似文献   
13.
设计了一种电极间隔为10 cm的介质阻挡放电装置,以氩气为工作气体,在低气压下产生等离子体。采用发射光谱法,研究了放电空腔内等离子体电子温度和电子密度随空间位置的变化规律。等离子体电子温度的变化通过使用Corona模型计算获得,等离子体电子密度的变化通过分析Ar原子750.4 nm谱线强度变化得到。实验发现空腔内不同位置的等离子体电子温度和电子密度是不同的。当测量位置从阴极向阳极移动时,电子温度先略上升而后迅速下降,再缓慢上升;电子密度先缓慢而后迅速地增大。  相似文献   
14.
魏小龙  徐浩军  李建海  林敏  宋慧敏 《物理学报》2015,64(17):175201-175201
等离子体的电子密度分布, 电子碰撞频率分布, 覆盖面积, 厚度是影响其覆盖目标电磁散射特征的关键属性. 对此, 本文开展了在20 cm×20 cm×7 cm石英腔内感性耦合等离子体(ICP)的放电实验, 观察了在高气压条件下, 空气ICP的环形放电形态, E-H模式跳变现象和分层结构, 测量了其电负性核心区和电正性边缘区宽度和厚度随功率、气压的变化趋势, 并通过COMSOL Multiphysics对平板线圈磁场强度分布的分析和电负性气体扩散理论给予上述现象合理的解释, 同时, 利用微波透射干涉法测量了核心区域的电子密度随功率和气压的变化曲线, 利用理论模型计算了边缘区域的电子密度分布, 最后通过辅助气体Ar发射谱线的玻尔兹曼图形法得到了核心区和边缘区的电子激发温度.  相似文献   
15.
电感耦合等离子体具有电子密度高、放电面积大、工作气压宽、结构简单等特点,在等离子体隐身领域具有突出的潜在优势。相对于开放式等离子体,闭式等离子体更适应于飞行器表面空气流速高、气压变化大的特殊环境。研究着眼于飞行器关键部件的局部隐身应用,设计了一种镶嵌于不锈钢壁中的圆柱形石英腔体结构,利用电感耦合放电的方式在腔体中产生均匀的平板状等离子体。由于增加了接地金属,降低了腔体内的钳制电位,同之前的纯石英腔体相比,该结构显著改善了等离子体的均匀性。研究了该闭式腔体内氩气电感耦合等离子体(ICP)的放电特性和发射光谱,实验中放电功率达到150 W时,可以明显观察到ICP的E-H模式转换,此时发射光谱和电子密度都呈现阶跃式增长。氩气发射光谱强度随放电功率升高显著增加,但是不同谱线强度增加幅度并不一致,分析认为是受不同的跃迁概率和激发能的影响。根据等离子体的发射光谱,利用玻尔兹曼斜率法对电子激发温度进行诊断,得到电子激发温度在2 000 K以上,并且随功率升高而降低,因为功率增大使电子热运动增强,粒子间的碰撞加剧,碰撞导致的能量消耗也更大。电子激发温度沿腔体径向呈近似均匀分布,分布趋势受功率影响不大。针对利用发射光谱诊断电子密度误差较大、计算繁琐的问题,引入Voigt卷积函数,经过拟合滤除多余展宽项的影响,得到准确的Stark展宽半高宽。最终利用发射光谱Stark展宽法计算了电子密度,腔体中心处的峰值密度可以达到7.5×1017 m-3。随着放电功率增大,线圈中容性分量降低,耦合效率增大,电子密度随之增大,但空间分布趋势基本不受功率影响。  相似文献   
16.
氩气压力对螺旋波放电影响的发射光谱诊断及仿真研究   总被引:1,自引:0,他引:1  
螺旋波等离子体源以其高电离效率与高密度优势受到多个领域的青睐。螺旋波放电高电离效率的机理或者功率耦合模式,一直是困扰该领域学者的难点之一,对于放电过程与特性的诊断则是揭示其物理机制的重要途径。光谱诊断能够克服介入式诊断手段对等离子体的干扰同时受等离子体烧蚀等弊端,且响应速度快、操作灵活。为研究螺旋波等离子体的放电特性以及气体压力的影响,开展了以氩气为工质气体的光谱实验研究,并针对实验开展了Helic程序数值模拟。通过改变光纤探头焦距调整径向诊断位置,得到谱线强度的径向分布。由氩原子4p-4s能级跃迁产生的谱线主要集中在740~920 nm区间,谱线相对强度较离子激发谱线较强。实验研究发现,在较低氩气压力范围(0.2 Pa<PAr<1.0 Pa),随着压力增加,放电光强迅速增加,但是当压力增加到大于1.0 Pa之后,光强增长的趋势变缓,甚至部分谱线的相对强度不再增长,达到类饱和状态,朗缪尔探针测量得到离子密度变化趋势与其相似。光强分布在靠近径向边界处(r≈4 cm)存在凸起,且随压力增加,该凸起分布更为明显。通过对电子温度的计算发现,压力增加到一定程度将影响放电均匀性。仿真结果显示,增大压力,功率沉积密度的径向分布逐渐向径向边界处积累,与实验观察到的谱线强度径向凸起相一致,螺旋波与TG波的耦合效率增加。随着气体压力的增加,Er的径向边界峰值降低,原因是波所受阻尼增强,TG波被有效地局限于径向较窄的边界处。电流密度轴向分量Jz在等离子体内部和边界处的峰值呈显著的减小趋势,可见,虽然压力增加一定程度上提高了等离子体密度,但却相应的减小了电离率,导致轴向电流密度受限。但是径向电流密度Jr却呈现先减小后增大的趋势,且增长幅度明显,综合来看,放电效率有所提高。可见适当增加气体压力,有助于提高放电的功率耦合效率和强度,增加等离子体密度。光强比值法是针对线性谱线参数计算的典型方法,Helic程序亦是专业领域内认可度很高的计算工具,结果可靠,分析方法具有可借鉴性。实验及仿真结果对于提高氩气工质下的螺旋波放电强度提供了一定的参考价值。  相似文献   
17.
针对玻璃纤维增强塑料层压板脱黏缺陷的红外无损检测问题,首先制备了一种人工脱黏缺陷试样,采用红外脉冲热波成像检测技术对脱黏缺陷进行检测,分析了层压板脱黏区和非脱黏区的表面热信号瞬态响应过程,以图像信噪比和标准化对比度作为评价指标,定量对比了热信号重构、复调制Zoom-FFT、改进的独立分量分析和主分量分析4种热图重构算法...  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号