排序方式: 共有16条查询结果,搜索用时 15 毫秒
11.
在商品描述、新闻评论等多模态场景下, 已有复述生成模型只能围绕文本信息生成复述。为了解决其因无法利用图像信息而导致的语义丢失问题, 提出多模态复述生成模型(multi-modality paraphrase generation model, MPG)来引入图像信息, 并用其生成复述。在MPG中, 为了引入与原句对应的图像信息, 首先根据原句构建抽象场景图, 并将与原句相关联的图像区域特征转换为场景图的结点特征。进一步地, 为了利用构建好的场景图来生成语义一致的复述句, 使用关系图卷积神经网络和基于图的注意力机制对图结点特征进行编码和解码。在评测阶段, 提出句对相似度计算方法, 从MSCOCO数据集中筛选出描述图像中相同物体的句对, 并将其作为复述测试集进行评测。实验结果显示, 所提出的MPG模型生成的复述拥有更好的语义忠实度, 表明在多模态场景下图像信息的引入对提高复述生成质量的有效性。 相似文献
12.
领域自适应是解决低资源问题的一种通用方式,可应用于各种自然语言处理的任务中.当前针对命名实体识别(named entity recognition, NER)任务的领域自适应研究通常从单一的源领域迁移到目标领域,在目标领域和源领域相近的情况下,这种方式能够取得较好的识别效果,但是在目标领域与源领域相关度不高的情况下,单一领域迁移方式存在很大的局限性.针对这一问题,提出一种融合多源领域贡献度加权的自适应NER模型(multi-domain adaptation NER model based on importance weighting, MDAIW).1)通过多个领域的知识迁移来提升目标领域的实体识别性能;2)根据不同领域及其领域内样本对目标领域的重要性,计算领域贡献度;3)将领域贡献度引入到NER模型中,以此来实现更好的模型领域适应性.最终在多个目标领域上进行实验,性能皆优于当前性能最好的方法,验证了模型的有效性. 相似文献
13.
为了解决仅采用基于语音或基于字形的音译方法造成的误差过大问题,以汉英音译为主要研究对象,运用统计与规则的理论思想,提出融合基于语音和字形的音译单元对齐方法,设计了4个实验,与传统方法进行对比。实验结果显示,该方法能够很好地提高机器音译的准确性。 相似文献
14.
实体关系抽取在挖掘结构化事实的信息抽取系统中扮演着重要的角色。近年来,深度学习在关系抽取任务中取得了显著的成果,同时,注意力机制也逐步地融入到神经网络中,进一步提高了关系抽取的性能。但是,目前的注意力机制主要关注一些低层次的特征,比如词汇等。本文提出一种基于高层语义注意力机制的分段卷积神经网络模型(PCNN_HSATT,high-level semantic attention-based piecewise convolutional neural networks),该模型将注意力机制设置在分段最大池化层后,动态地关注了高层次的语义信息。除此之外,由于中文实体关系语料稀疏性较大,本文利用同义词词林对COAE2016语料进行增强以扩大数据规模。最后在COAE2016和ACE2005的中文语料上进行实验,F1值分别达到了78.41%和73.94%,与效果最好的SVM方法相比分别提高了10.45%和0.67%,这充分证明了PCNN_HSATT模型在中文关系抽取上的有效性。 相似文献
15.
为解决已有复述语义计算方法未考虑句法结构的问题, 提出基于句法结构的神经网络复述识别模型, 设计基于树结构的神经网络模型进行语义组合计算, 使得语义表示从词语级扩展到短语级。进一步地, 提出基于短语级语义表示的句法树对齐机制, 利用跨句子注意力机制提取特征。最后, 设计自注意力机制来增强语义表示, 从而捕获全局上下文信息。在公开英语复述识别数据集Quora上进行评测, 实验结果显示, 复述识别性能得到改进, 达到89.3%的精度, 证明了提出的基于句法结构的语义组合计算方法以及基于短语级语义表示的跨句子注意力机制和自注意力机制在改进复述识别性能方面的有效性。 相似文献
16.
针对不同语种的被动和可能语态的句法结构差异影响机器翻译质量的问题,提出融合语态特征的最大熵翻译模型。首先从日语端分出被动语态、可能语态和其他语态,然后从英语端对被动和可能语态进一步分类,抽取双语特征训练最大熵规则分类模型,将语态特征融合到对数线性模型中以改善翻译模型。提高解码器在翻译被动语态和可能语态时规则选择的准确性。实验结果表明,该方法可以有效地改善日英统计机器翻译的句法结构调序和词汇翻译,提升被动语态和可能语态句子的翻译质量。 相似文献