首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2340篇
  免费   323篇
  国内免费   378篇
化学   572篇
晶体学   27篇
力学   47篇
综合类   41篇
数学   173篇
物理学   591篇
综合类   1590篇
  2024年   15篇
  2023年   35篇
  2022年   64篇
  2021年   37篇
  2020年   31篇
  2019年   58篇
  2018年   62篇
  2017年   48篇
  2016年   45篇
  2015年   60篇
  2014年   119篇
  2013年   104篇
  2012年   130篇
  2011年   136篇
  2010年   114篇
  2009年   130篇
  2008年   148篇
  2007年   170篇
  2006年   122篇
  2005年   125篇
  2004年   122篇
  2003年   107篇
  2002年   70篇
  2001年   86篇
  2000年   84篇
  1999年   88篇
  1998年   83篇
  1997年   82篇
  1996年   86篇
  1995年   67篇
  1994年   57篇
  1993年   37篇
  1992年   54篇
  1991年   44篇
  1990年   52篇
  1989年   43篇
  1988年   12篇
  1987年   12篇
  1986年   10篇
  1985年   17篇
  1984年   13篇
  1983年   12篇
  1982年   7篇
  1981年   11篇
  1980年   3篇
  1979年   3篇
  1978年   7篇
  1973年   7篇
  1964年   4篇
  1960年   2篇
排序方式: 共有3041条查询结果,搜索用时 8 毫秒
61.
近年来,旅游业已经成为很多地区拉动经济增长的重要产业之一。新疆具有浓郁的民族风情以及各种得天独厚的旅游资源,这为旅游业蓬勃发展提供了坚实基础。首先介绍了新疆旅游业的基本发展状况及趋势;其次,针对新疆2005-2017年的统计数据,运用Stata14.0软件对该数据进行多元回归,分析了旅游业对地区经济增长的贡献,并对新疆经济增长与旅游业之间的影响机制进行研究;最后根据实证分析得出的结论,提出了若干对策建议。  相似文献   
62.
采用Pd(OAc)2/[mmim]I催化体系,在不同反应条件下可以将烷基胺、芳香胺及氨基醇(酚)一步转化为氨基甲酸酯、脲和2-噁唑啉酮.N-苯基氨基甲酸甲酯、二苯基脲及苯并-2-噁唑酮的催化转化频率分别为12417,17638和4114h-1.  相似文献   
63.
介绍了MSP430单片机、CH452数码管显示驱动和键盘扫描控制芯片,设计了一种键盘方案。  相似文献   
64.
二氧化碳与环氧化合物直接制备聚碳酸酯   总被引:3,自引:0,他引:3  
综述了近几年来发展的用于二氧化碳与环氧化合物直接催化合成聚碳酸酯的各类催化剂,并详细讨论了其催化反应机理.利用二氧化碳与环氧化合物来合成聚碳酸酯,对于高分子合成化学、碳资源利用和环境保护都具有重大意义.它是发展聚碳酸酯生产的一个具有很大潜力的方面.  相似文献   
65.
长期以来,在研究提高卤化银乳剂潜影形成效率的化学增感技术时,都侧重于对光生电子的行为和过程研究,而对孪生的正空穴的走向关注甚少.这种思路近年来有所改变,逐渐从如何把电子与空穴有效分离转变为如何对空穴的有效利用上,即把空穴通过化学方法转换成电子或电子载体以达到提高潜影形成效率的目的.本论文工作是以甲酸盐作为空穴捕获剂,研究它在卤化银颗粒中的掺杂技术并考察这种掺杂乳剂的增感作用.  相似文献   
66.
李臻  夏春谷 《化学学报》2001,59(3):371-376
采用快速混合停流技术,考察了pH=7.4,V(CH~3CN):V(H~2O)=1:1的混合溶剂中水溶性锰卟啉Mn^I^I^I(TMPyP)与单氧给体NaOCl及KHSO~5构建的细胞色素P-450模拟酶体系催化氧化活性物种的生成及催化烯烃DPBD环氧化过程。实验表明,在反应进行中存在着两种中间体:oxo-Mn^V(Por.)(1)和oxo-Mn^I^V(Por.)(2),但两者的催化活性有差异,在催化烯烃DPBD环氧化反应中,对于Mn^I^I^I(TMPyP)-NaOCl体系起催化作用的主要作用的主要是中间体1,而对于Mn^I^I^I(TNPyP)-KHSO~5体系两种中间体均与烯烃配位生成环氧化产物,并且该体系催化活性较高。  相似文献   
67.
高效转化可再生生物质资源制备人类社会必需的燃料和化学品是当前关注和研究的热点之一.生物质基糠醇来源于玉米芯、甘蔗渣、秸秆等农林副产物,价廉易得,是选择氢解合成高附加值1,2-和1,5-戊二醇的理想原料.目前生物质基呋喃衍生物氢解制备二元醇的研究主要集中在Pt,Ru,Rh和Ir等贵金属催化剂,对无Cr非贵金属催化剂的研究甚少.基于纳米Cu催化剂较高的C-O键氢解活性和较低的C-C键裂解活性,以及碱性载体对反应物和反应中间体的稳定作用,我们在前期Cu-Mg_3AlO_(4.5)和Cu-Al_2O_3催化剂催化糠醇氢解研究基础上,以具有一定碱性的ABO_3结构的钙钛矿型化合物为载体负载活性Cu开展糠醇氢解研究,深入研究催化剂结构、组成和活性金属价态等对催化剂活性和选择性影响,并研究了催化剂循环使用稳定性.首先我们采用柠檬酸一步络合法制备了一系列具有一定钙钛矿结构的不同Cu负载量(0-20 wt%)的Cu-LaCoO_3催化剂以及LaCoO_3负载的5 wt%Pt,Ru,Rh和Pd催化剂并考察了它们的糠醇选择氢解制备戊二醇性能.研究发现,在相同活性金属负载量(5 wt%)时,Cu-LaCoO_3催化剂具有较优异的呋喃环C-O键氢解活性,而贵金属催化剂倾向于催化呋喃环C=C键加氢饱和.考察不同Cu负载量的Cu-LaCoO_3催化剂催化糠醇氢解性能发现,随着Cu负载量的增加,糠醇转化率先升高后降低,在10 wt%Cu负载量时达最高(94.6%),戊二醇总选择性也随Cu负载量的增加先升高后降低,在5 wt%Cu负载量时最高(52.2%),总体以10 wt%Cu负载量催化剂表现出最优异的性能.接着我们考察了反应动力学条件如温度、压力和反应时间以及还原处理条件对10 wt%Cu-LaCoO_3催化性能的影响.研究发现适当的高温(~433 K)和高压(6 MPa H_2)有利于Cu-LaCoO_3催化糠醇氢解制戊二醇,而低浓度氢气(5 vol%)还原有利于1,5-戊二醇的生成,高氢气浓度(纯氢)还原有利于呋喃环加氢饱和的四氢糠醇生成.10 wt%Cu负载量的催化剂经5%H_2-95%N_2处理后,在413 K和6 MPa H_2条件下可取得100%的糠醇转化率以及55.5%的戊二醇总选择性(其中1,5-戊二醇和1,2-戊二醇的选择性之比接近3:1).进一步考察了10 wt%Cu-LaCoO_3催化剂的循环使用稳定性,研究发现无论是在高初始转化率(~93.7%)还是低初始转化率(~30.5%)条件下,经多次循环使用后糠醇转化率先升高后基本保持不变,而戊二醇总选择性呈下降趋势,四氢糠醇的选择性逐渐上升.结合XRD,XPS,BET,H_2-TPR,CO_2-TPD,NH3-TPD和HRTEM等多种表征技术对Cu-LaCoO_3催化剂的结构及在糠醇氢解反应中的活性位进行了表征,发现高分散的活性物种、合适的碱性以及部分还原的活性组分均有利于提高催化剂的活性与1,5-戊二醇的化学选择性,高分散的Cu~0与部分还原的Co_3O_4(很可能是CoO)之间的协同催化对于取得较优异的糠醇氢解性能,尤其是较高的1,5-/1,2-戊二醇比例至关重要.  相似文献   
68.
Brnsted酸性离子液体作为反应介质和催化剂,实现了苯乙烯类化合物的氢烯基化反应和富电子芳烃参与的氢烷基化反应,取得了优秀的产率和选择性,其产率最高可达到97%,底物适应性比较好,易于放大到克量级,为反式1,3-二芳基1-丁烯化合物和1,1-二芳基乙烷类化合物的制备提供了绿色合成新途径,值得一提的是本方法能以85%的产率高效合成抗蛋白凝聚药物3i,表现出了很好的实用价值.  相似文献   
69.
生物质基呋喃衍生物来源广泛,利用生物糠醛、5-羟甲基糠醛及他们的衍生物选择氢解制备戊二醇、己二醇具有重要的研究价值和意义.根据原料和催化剂体系不同对生物质基呋喃衍生物选择氢解制备高碳二元醇的代表性工作进行了归纳总结,对影响催化剂活性和选择性的关键因素如活性金属、载体、助剂及反应溶剂等进行了分析讨论,对反应可能涉及的路径和机理进行了阐述,并对未来的研究方向和发展趋势作了展望.  相似文献   
70.
在298.15 K下,利用等温环境溶解反应热量计,测定了离子液体[Cnmim][H2PO4] (n= 3, 4, 5, 6) (1-烷基-3-甲基咪唑磷酸盐)在水中不同浓度的摩尔溶解热(ΔsolHm),根据Pitzer电解质溶液理论计算得到了标准摩尔溶解焓(ΔsolHm0)和Pitzer焓参数:βMX(0)L, βMX(1)L,和CϕL,并计算了表观相对摩尔焓。通过推导讨论,得到了离子液体[Cnmim][H2PO4](n= 3, 4, 5, 6)同系物每摩尔亚甲基对标准摩尔溶解焓的贡献。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号