首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   15篇
  免费   7篇
  国内免费   25篇
化学   26篇
综合类   21篇
  2020年   4篇
  2019年   3篇
  2018年   1篇
  2016年   1篇
  2015年   2篇
  2014年   4篇
  2013年   3篇
  2012年   6篇
  2011年   10篇
  2010年   4篇
  2009年   3篇
  2008年   3篇
  2006年   1篇
  2005年   1篇
  2000年   1篇
排序方式: 共有47条查询结果,搜索用时 35 毫秒
1.
以模型污染物罗丹明B(RhB)的光降解为探针,评估了Keggin型钴取代杂多阴离子PW11O39Co(Ⅱ)(H2O)5-(PW11Co)及其异相体系PW11Co/D301R的可见光催化活性,提出了光催化反应的机理,同时考察了催化剂用量、溶液酸度以及溶液中PW11Co和RhB的相互作用对RhB可见光催化降解速率的影响。实验结果表明,PW11Co均相体系及其异相体系PW11Co/D301R对RhB的可见光降解均有较高的光催化活性,但与PW11Co相比,PW11Co/D301R的光催化活性更高。导致RhB降解的主要是羟基自由基。与PW11Co均相体系相比,在PW11Co/D301R异相体系中由于PW11Co与RhB的配位作用大为减弱,同时D301R对RhB具有富集作用,因而大大提高了RhB的光催化降解速率。  相似文献   
2.
将Keggin型铬取代磷钨杂多阴离子PW11O39Cr(Ⅲ)(H2O)4-(PW11Cr)负载于弱碱性阴离子交换树脂D301R表面,制备了固体光催化剂PW11Cr/D301R,并以模型污染物罗丹明B(RhB)的降解为探针评估了该催化剂的可见光催化活性,讨论了光催化反应机理,同时考察了催化剂剂量、溶液pH值和溶液中常见离子对RhB可见光催化降解反应的影响以及催化剂的稳定性。实验结果表明,当PW11Cr/D301R的剂量为100 mg时,10μmol/L RhB水溶液暴露在200 W金卤灯下进行照射,RhB完全降解所需的时间仅为30 min,比PW11Cr均相体系缩短了3倍;反应180 min总有机碳(TOC)去除率约为84%。催化剂剂量、溶液pH值和溶液中存在的Cl-、SO2-4和PO3-4对RhB光催化降解反应的速率均有一定影响。催化剂循环实验显示经循环使用7次后催化剂的活性几乎没有损失。  相似文献   
3.
以模型污染物罗丹明B(RhB)的光降解为探针,评估了Keggin型钴取代杂多阴离子PW11O39Co髤(H2O)5-(PW11Co)及其异相体系PW11Co/D301R的可见光催化活性,提出了光催化反应的机理,同时考察了催化剂用量、溶液酸度以及溶液中PW11Co和RhB的相互作用对RhB可见光催化降解速率的影响。实验结果表明,PW11Co均相体系及其异相体系PW11Co/D301R对RhB的可见光降解均有较高的光催化活性,但PW11Co/D301R的光催化活性更高。导致RhB降解的主要是羟基自由基。与PW11Co均相体系相比,在PW11Co/D301R异相体系中由于PW11Co与RhB的配位作用大为减弱,同时D301R对RhB具有富集作用,因而大大提高了RhB的光催化降解速率。  相似文献   
4.
应用循环伏安、方波伏安和交流阻抗法研究了Keggin型缺位硅钨杂多阴离子SiW11O398-(SiW11)在0.1mol.L-1NaHSO4+Na2SO4溶液中的电化学性质及其对H2O2还原的间接电催化作用.结果表明,SiW11的酸性水溶液在玻碳(GC)电极上显示两对可逆的还原-氧化波,对应的电荷迁移数均为1,且有2个质子参与反应.根据第1对波的还原峰电流与扫描速率平方根关系得到SiW11在溶液中的扩散系数DO为8.92×10-6cm2.s-1.SiW11对H2O2的还原具有明显的电催化活性,催化峰电位随溶液pH的降低而正移,峰电流增大.质子H+在催化反应中起协同促进作用.实验测定该电催化过程的均相准一级反应速率常数为0.30 s-1.SiW11电催化还原H2O2的机理被认为是经过形成所谓"七配位过氧化物"而发生的.  相似文献   
5.
采用二次阳极氧化法在纯净的钛片表面制备出TiO_2纳米管,经表面清洗后将其放入带聚四氟乙烯衬里的反应釜中,同时向釜中加入一定量的Keggin型铁取代杂多酸盐Cs_4PW_(11)O_(39)Fe(III)(H_2O)(CsPW11Fe)水溶液,通过水热法在TiO_2纳米管内生长CsPW_(11)Fe晶体,最终得到CsPW_(11)Fe/TiO_2纳米管修饰电极。通过SEM和XRD对该修饰电极进行了表征,研究了其电化学性能以及对H_2O_2的电催化行为。结果表明,CsPW11Fe/TiO_2纳米管修饰电极的峰电流与峰电位随H_2O_2浓度不同而发生明显的变化,因此可以作为电化学传感器应用于H_2O_2的检测。  相似文献   
6.
以PW11Cu为可见光活性组分,TiO2为载体结构组分,采用溶胶-凝胶法制备了PW11Cu/TiO2复合膜可见光催化剂,并用UV-Vis DRS、IR、Raman、XRD、SEM、TEM等手段对催化剂的光吸收性质、化学组成、晶相、表面结构和形貌进行了表征,同时,以模型污染物RhB的可见光降解为探针评估了它的光催化活性,考察了膜处理温度、PW11Cu含量和溶液酸性对催化活性的影响,最后,通过催化剂循环降解RhB试验评估了PW11Cu/TiO2膜的稳定性。实验结果表明,PW11Cu/TiO2膜对可见光有明显吸收,低温(100℃)处理的膜为无定形态,高温(500℃)处理的膜为多晶态;低温处理的膜具有较高的可见光催化活性,用于RhB的可见光催化降解,在中性条件下反应80 min,RhB的降解率为100%,TOC去除达32%(4 h);提高溶液酸性有利于催化剂活性的提高,在pH=2.5的条件下,达到100%的RhB降解仅需30 min。在本实验条件下,PW11Cu的最佳剂量是3.0 g。经过10次循环降解RhB,催化剂的光催化活性仍保留约90%。  相似文献   
7.
 用循环伏安和交流阻抗等方法详细研究了SiW11O39Fe(Ⅲ)(H2O)5- (SiW11Fe)的电化学性质和对H2O2 还原的间接电催化作用,并与PW11O39Fe(Ⅲ)(H2O)4- (PW11Fe)进行了比较,同时提出了电催化反应的机理。实验结果表明,与PW11Fe 类似,SiW11Fe在酸性水溶液中也有3对还原氧化伏安响应,分别归属于Fe(Ⅲ)/Fe(Ⅱ)电对和W-O骨架的还原氧化反应。但SiW11Fe的3对还原氧化波的峰电位与PW11Fe)相比明显负移,且均受溶液pH的影响。SiW11Fe中Fe(Ⅲ)/Fe(Ⅱ)电对传递电子的可逆性比PW11Fe的差,但同样对H2O2 的还原具有明显的电催化作用,并受溶液pH的影响。随着溶液pH的增加,Fe波和W-O骨架波的还原氧化峰电位均负移,Fe波对H2O2 还原的电催化活性降低甚至被完全抑制,相反,第一个W-O骨架波对H2O2 的还原却有明显的电催化作用。  相似文献   
8.
为了解决均相keggin型锰取代杂多阴离子PW_(11)O_(39)Mn(Ⅱ)(H_2O)~(5-)[PW11Mn]光催化剂在水溶液中难以回收利用的问题,选用D301R弱碱性阴离子交换树脂对其进行吸附,制备了PW_(11)Mn/D301R光催化材料。通过有机染料亚甲基蓝(MB)的可见光降解反应考察了PW_(11)Mn/D301R材料的光催化性能。实验表明,PW_(11)Mn/D301R在可见光照射下对MB有较高的光催化降解活性。此外,还系统考察了溶液中有其他阴离子存在时对光催化降解效果的影响,并提出了作用机制。本研究为高效利用太阳能去除水体有机染料污染物提供了一条新颖途径。  相似文献   
9.
高级氧化法产生的具有强氧化性的·OH、·O2 -等可以把水体中有害的有机物大分子 氧化成CO2、H2O 等小分子物质。以甲基三甲氧基硅烷为有机陶瓷的前驱体,以Keggin 型锰取代杂 多阴离子PW11O39Mn(II)(H2O)5-[PW11Mn]为可见光活性组分,采用溶胶-凝胶法制备PW11Mn/有机 陶瓷膜光催化剂,并进行了IR、UV-Vis DRS 以及SEM 等表征。通过高级氧化法对罗丹明B(RhB) 的光降解反应来评估其光催化活性,同时探究了PW11Mn 负载量、煅烧温度对PW11Mn/有机陶瓷膜 光催化性能的影响。实验得出,100 ℃时煅烧的PW11Mn 负载量为2.0 g 的PW11Mn/有机陶瓷膜对罗 丹明B 降解效果最佳。  相似文献   
10.
为利用太阳光除去水体中有机染料污染物,并且解决催化剂回收再利用问题,以SolGel法结合垂直提拉及锻烧等技术,制备了铁取代Keggin型磷钨杂多阴离子PW_(11)O_(39)Fe(Ⅲ)(H_2O)~(4-)(PW_(11)Fe)与有机陶瓷复合光催化材料。利用UV-Vis、FT-IR和SEM等手段对上述复合材料进行了结构表征和组成测定。通过水溶液中罗丹明B(RhB)的降解反应评价PW11Fe/有机陶瓷复合光催化材料的光催化活性,并系统研究了催化剂用量、煅烧温度等条件对光催化性能的影响。实验结果表明:当PW_(11)Fe的负载量为3.0 g时,50 mL 10μmol/L的RhB水溶液在400 W金卤灯照射120 min后,降解率可达98.6%。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号