首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6914篇
  免费   894篇
  国内免费   684篇
化学   3897篇
晶体学   53篇
力学   305篇
综合类   51篇
数学   518篇
物理学   1867篇
无线电   1801篇
  2024年   31篇
  2023年   226篇
  2022年   234篇
  2021年   296篇
  2020年   309篇
  2019年   231篇
  2018年   188篇
  2017年   209篇
  2016年   287篇
  2015年   273篇
  2014年   386篇
  2013年   435篇
  2012年   575篇
  2011年   543篇
  2010年   407篇
  2009年   425篇
  2008年   423篇
  2007年   384篇
  2006年   408篇
  2005年   297篇
  2004年   191篇
  2003年   161篇
  2002年   154篇
  2001年   134篇
  2000年   133篇
  1999年   160篇
  1998年   129篇
  1997年   128篇
  1996年   104篇
  1995年   126篇
  1994年   104篇
  1993年   69篇
  1992年   85篇
  1991年   67篇
  1990年   57篇
  1989年   32篇
  1988年   19篇
  1987年   20篇
  1986年   22篇
  1985年   12篇
  1984年   6篇
  1983年   4篇
  1982年   4篇
  1981年   2篇
  1980年   1篇
  1979年   1篇
排序方式: 共有8492条查询结果,搜索用时 15 毫秒
991.
This work presents a comprehensive study on phase transitions in LiAlO2 system at high pressures and temperatures (0.5-5.0 GPa and 300-1873 K, respectively), as well as the phase stability for polymeric phases of LiAlO2 in the studied P-T space by X-ray diffraction (XRD). Besides the previously described polymorphic hexagonal α-phase, orthorhombic β-phase and tetragonal δ-phase, a possible new phase of LiAlO2 was observed after the tetragonal γ-LiAlO2 sample was treated at 5.0 GPa and 389 K. The stable regimes of these high-pressure phases were defined through the observation of coexistence points of the polymeric phases. Our results revealed that LiAlO2 could experience structural phase transitions from γ-LiAlO2 to its polymorphs at lower pressures and temperatures compared to the reported results. Hexagonal α-LiAlO2 with highly (003) preferential orientation was prepared at 5.0 GPa and 1873 K.  相似文献   
992.
Dopamine (DA) plays an essential role in the central nervous, renal, hormonal and cardiovascular systems. Various modified carbon nanotubes (CNT)-based dopamine sensors have been reported, but inexpensive, highly sensitive plain CNT-based ones are seldom studied. In this work, a facile and inexpensive CNT-based DA sensor is made by rich-defect multi-walled carbon nanotubes (RD-CNT) via an ultrasound method. The defect and elemental states of the RD-CNT are systematically studied by transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HR-TEM), Raman spectroscopy, X-ray powder diffraction (XRD) and X-ray-photoelectron spectroscopy (XPS). Results show that massive holes and cracks exist in RD-CNT. The level of defects increases from the additional exposed edges. The electrochemical characterizations indicate that the electrochemical sensor has the highest sensitivity of 438.4 μA/(μM ⋅ cm2) among all carbon materials-based DA sensors while well meeting the clinically required detection range and selectivity. The DA sensor was further used to detect live healthy human serum and live PC12 cells with satisfactory results, thus holding great promise for an inexpensive but sensitive DA sensor in practical applications of clinical diagnosis and biological research.  相似文献   
993.
The development of blue-emissive ambipolar organic semiconductor is an arduous target due to the large energy gap, but is an indispensable part for electroluminescent device, especially for the transformative display technology of simple-structured organic light-emitting transistor (SS-OLET). Herein, we designed and synthesized two new dibenzothiophene sulfone-based high mobility blue-emissive organic semiconductors (DNaDBSOs), which demonstrate superior optical property with solid-state photoluminescent quantum yield of 46–67 % and typical ambipolar-transporting properties in SS-OLETs with symmetric gold electrodes. Comprehensive experimental and theoretical characterizations reveal the natural of ambipolar property for such blue-emissive DNaDBSOs-based materials is ascribed to a synergistic effect on lowering LUMO level and reduced electron injection barrier induced by the interfacial dipoles effect on gold electrodes due to the incorporation of appropriate DBSO unit. Finally, efficient electroluminescence properties with high-quality blue emission (CIE (0.179, 0.119)) and a narrow full-width at half-maximum of 48 nm are achieved for DNaDBSO-based SS-OLET, showing good spatial control of the recombination zone in conducting channel. This work provides a new avenue for designing ambipolar emissive organic semiconductors by incorporating the synergistic effect of energy level regulation and molecular-metal interaction, which would advance the development of superior optoelectronic materials and their high-density integrated optoelectronic devices and circuits.  相似文献   
994.
Implant-associated fibrotic capsule formation presents a major challenge for the development of long-term drug release microspheres and implantable sensors. Since material properties have been shown to affect in vitro cellular responses and also to influence short-term in vivo tissue responses, we have thus assumed that the type and density of surface chemical groups would affect the degree of tissue responses to microsphere implants. To test this hypothesis, polypropylene particles with different surface densities of -OH and -COOH groups, along with the polypropylene control (-CH2 groups) were utilized. The influence of functional groups and their surface densities on fibrotic reactions were analyzed using a mice subcutaneous implantation model. Our comparative studies included determination and correlation of the extents of fibrotic capsule formation, cell infiltration into the particles, and recruitment of CD11b+ inflammatory cells for all of the substrates employed. We have observed major differences among microspheres coated with different surface functionalities. Surfaces with -OH surface groups trigger the strongest responses, while -COOH-rich surfaces prompt the least tissue reactions. However, variation of the surface density of either functional group has a relatively minor influence on the extent of fibrotic tissue reactions. The present results show that surface functionality can be used as a powerful tool to alter implant-associated fibrotic reactions and, potentially, to improve the efficacy and function of drug-delivery microspheres, implantable sensors, and tissue-engineering scaffolds.  相似文献   
995.
This paper presents a novel method for preparation of polymer-silica colloidal nanocomposites based on emulsion polymerization and subsequent sol-gel nanocoating process. The polystyrene latex particles bearing basic groups on their surfaces were successfully synthesized through emulsion polymerization using 4-vinylpyridine (4VP) as a functional comonomer and polyvinylpyrrolidone (PVP) as a surfactant. A series of poly(styrene-co-4-vinylpyridine)/SiO2 nanocomposite particles with smooth or rough core-shell morphology were obtained through the coating process. The poly(styrene-co-4-vinylpyridine) particles could be dissolved subsequently or simultaneously during the sol-gel coating process to form hollow particles. The effects of the amount of 4VP, PVP, NH(4)OH, and tetraethoxysilane (TEOS) on both the nanocomposite particles and hollow particles were investigated. Transmission electron microscopy showed that the morphology of the nanocomposite particles and hollow particles was strongly influenced by the initial feed of the comonomer 4VP and the coupling agent PVP. The conditions to obtain all hollow particles were also studied. Thermogravimetric analysis and energy dispersive X-ray spectroscopy analyses indicated that the interiors of hollow particles were not really "hollow".  相似文献   
996.
Zou L  Xiang X  Wei M  Li F  Evans DG 《Inorganic chemistry》2008,47(4):1361-1369
The synthesis of single-crystalline ZnGa 2O 4 spinel phosphor with intense ultraviolet-emitting properties through a novel single-source inorganic precursor route is reported. This synthetic approach involves the calcination of a Zn-Ga layered double hydroxide precursor followed by selective leaching of the self-generated zinc oxide. Material characterization has been presented by chemical analysis, X-ray diffraction analysis, thermogravimetric-differential thermal analysis, Fourier transform infrared spectroscopy, scanning electron microscopy, transmission electron microscopy, X-ray photoelectron spectroscopy, electron paramagnetic resonance, nuclear magnetic resonance, extended X-ray absorption fine structure analysis, UV-vis, and photoluminescence measurements. The results indicate that a single-crystalline ZnGa 2O 4 spinel with an average particle size of around 150 nm has been obtained at a lower calcination temperature and shorter calcination time compared with that with the high-temperature solid-state reaction method, based on the fact that the large amount of highly dispersed ZnO particles generated during the high-temperature calcination of the single-source inorganic precursor has a remarkable segregation and inhibition effect on the growth of ZnGa 2O 4 spinel. Furthermore, it has been confirmed that that Ga (3+) ions locate not only on the octahedral sites but also on the tetrahedral sites in the matrix of the ZnGa 2O 4 spinel structure, and the Ga-O coordination environment has a great influence on the photoluminescence of ZnGa 2O 4 phosphors.  相似文献   
997.
Li Y  Xu G  Zou WQ  Wang MS  Zheng FK  Wu MF  Zeng HY  Guo GC  Huang JS 《Inorganic chemistry》2008,47(18):7945-7947
A novel zinc(II) 4-(5H-tetrazol)benzoic coordination polymer with an in situ generated tetrazole ligand exhibits the gsi (gamma-silicon) topology and high thermal stability; this compound possesses second-order nonlinear optical and interesting heat-induced photoluminescent properties.  相似文献   
998.
A Friedel–Crafts reaction of indolizines with 2-aryl-3H-indol-3-ones catalyzed by B(C6F5)3 is described. This protocol gives access to indolizine derivatives that are valuable building blocks in synthetic and pharmaceutical chemistry. The reaction proceeds under mild conditions, affording various C2-quaternary indolin-3-ones based on indolizine with high yields and regioselectivities. Moreover, the synthetic transformations of the target products were realized by N-methylation and trifluoromethane sulfonation.  相似文献   
999.
Organoid is an emerging frontier technology in the field of life science, in which pluripotent stem cells or tissue-derived differentiated/progenitor cells form 3D structures according to their multi-directional differentiation potential and self-assembly ability. Nowadays, although various types of organoids are widely investigated, their construction is still complicated in operation, uncertain in yield, and poor in reproducibility for the structure and function of native organs. Constructing a biomimetic microenvironment for stem cell proliferation and differentiation in vitro is recognized as a key to driving this field. This review reviews the recent development of engineered biomimetic microenvironments for organoids. First, the composition of the matrix for organoid culture is summarized. Then, strategies for engineering the microenvironment from biophysical, biochemical, and cellular perspectives are discussed in detail. Subsequently, the newly developed monitoring technologies are also reviewed. Finally, a brief conclusion and outlook are presented for the inspiration of future research.  相似文献   
1000.
Cognitive radio is an intelligent technology designed to help secondary users (SUs) increase their opportunity to access unused spectrum channels while avoiding interference with the primary users. In cognitive radio networks (CRNs), to find the available channels, SUs execute cooperative spectrum sensing and exchange channels-related control information, namely an available channels list (ACL), on a common control channel (CCC) before determining which channels they may transmit. However, some SUs, defined as attackers, could create a security issue by sharing false ACL information with other SUs to increase their own utilization of the available channels, which significantly decreases the performance of CRNs. In this paper, we propose an efficient detection scheme for CCC security to identify any attacker among the cooperating SUs. In the proposed scheme, all SUs share their ACL information on the CCC, with an associated reputation, which is updated according to its own behavior in each cooperation round, to cooperatively identify attackers. An attacker will be excluded from cooperating group with the result that its updated reputation value exceeds a certain threshold. Simulation results show how to further improve the performance of the proposed scheme by choosing optimized thresholds. In addition, we also illustrate that the proposed scheme can achieve considerable performance improvement compared with a attack detection technique COOPON for secure ACL information exchange.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号