首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   23730篇
  免费   3878篇
  国内免费   2351篇
化学   13193篇
晶体学   180篇
力学   1043篇
综合类   68篇
数学   2033篇
物理学   7565篇
无线电   5877篇
  2024年   106篇
  2023年   630篇
  2022年   791篇
  2021年   1006篇
  2020年   895篇
  2019年   895篇
  2018年   867篇
  2017年   733篇
  2016年   1124篇
  2015年   1088篇
  2014年   1343篇
  2013年   1712篇
  2012年   2068篇
  2011年   2078篇
  2010年   1475篇
  2009年   1376篇
  2008年   1493篇
  2007年   1336篇
  2006年   1243篇
  2005年   1052篇
  2004年   781篇
  2003年   576篇
  2002年   551篇
  2001年   438篇
  2000年   398篇
  1999年   534篇
  1998年   399篇
  1997年   373篇
  1996年   372篇
  1995年   317篇
  1994年   278篇
  1993年   263篇
  1992年   193篇
  1991年   199篇
  1990年   151篇
  1989年   120篇
  1988年   109篇
  1987年   75篇
  1986年   76篇
  1985年   62篇
  1984年   63篇
  1983年   31篇
  1982年   35篇
  1981年   25篇
  1980年   28篇
  1978年   14篇
  1976年   17篇
  1975年   15篇
  1973年   16篇
  1968年   14篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
971.
Polyaniline (PANI)/Au composite nanotubes were synthesized and developed as an electrode material for a nicotinamide adenine dinucleotide (NADH) sensor. A MnO2 self-degradable template method was used to prepare the tube-like PANI nanomaterial. By introducing PANI nanotubes into Au colloid, Au nanoparticles (NPs) were successfully decorated onto the surface of PANI nanotubes through electrostatic effects. The morphology, composition, and optical properties of the resulting products were characterized by transmission electron microscopy (TEM), X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, ultraviolet-visible (UV-vis) absorption spectra, and thermogravimetric analysis (TGA). In addition, the obtained PANI/Au composites were used as catalysts for the electrochemical oxidation of NADH. Cyclic voltammogram (CV) experiments indicated that PANI/Au-modified glassy carbon electrode showed a higher electrocatalytic activity towards the oxidation of NADH in a neutral environment. Differential pulse voltammogram (DPV) results illustrated that the fabricated NADH sensor had excellent anti-interference ability and displayed a wide linear range from 4?×?10?4 to 8?×?10?3 M with a detection limit of 0.5?×?10?7 M.  相似文献   
972.
Magnolol and honokiol as pharmaceutical ligands have been introduced into terbium complex systems for the first time and two hybrid organic–inorganic materials were successfully prepared. Both of them can sensitize terbium characteristic green emission effectively based on intra-molecular energy transfer channel. Moreover, they selectively recognized Cu2+ and Fe3+ through luminescence quenching effects. The photophysical properties and morphological structures were extensively investigated.  相似文献   
973.
We present the isolation of the first mononuclear dihalogermylene, and mono‐ and dinuclear stannylene complexes of transition metals. These exhibit exceptionally pyramidalized Group 14 centers. Additionally, removal of the halide substituents from the Ge/Sn atom was successfully performed in two ways, halide abstraction and reduction, leading to a variety of unusual structural motifs.  相似文献   
974.
A magnesium‐catalyzed asymmetric ring‐opening reaction of aziridine with indole has been realized by employing commercially available chiral ligands. Both of the enantiomers of the ring‐opening product could be obtained with good yields and a high level of enantioselectivity. The corresponding ring‐opening product could be further transformed to various types of enantioenriched C3‐halogenated‐pyrroloindolines.  相似文献   
975.
cis‐2,6‐Tetrahydropyran is an important structural skeleton of bioactive natural products. A facile synthesis of cis‐2,6‐disubstituted‐3,6‐dihydropyrans as cis‐2,6‐tetrahydropyran precursors has been achieved in high regio‐ and stereoselectivity with high yields. This reaction involves a palladium‐catalyzed decarboxylative allylation of various 3,4‐dihydro‐2H‐pyran substrates. Extending this reaction to 1,2‐unsaturated carbohydrates allowed the achievement of challenging β‐C‐glycosylation. Based on this methodology, the total syntheses of (±)‐centrolobine and (+)‐decytospolides A and B were achieved in concise steps and overall high yields.  相似文献   
976.
The degradation behaviours of five straight‐chain dicarboxylic acids (from ethanedioic acid to hexanedioic acid) were compared in aqueous TiO2‐based photocatalysis. When all other conditions were identical, the degradation rates were found to fluctuate regularly with the parity of the number of carbon atoms. Dicarboxylic acids with an even number of carbon atoms (e‐DAs) always degraded more slowly than those acids with an odd number of carbon atoms (o‐DAs). This unusual fluctuation in the reactivity for the degradation of dicarboxylic acids by TiO2‐based photocatalysis is very closely related to the different pre‐coordination modes of the acids with the photocatalyst. Attenuated total reflection FTIR (ATR‐FTIR) of e‐DAs labelled with 13C showed that both carboxyl groups of the acid coordinate to TiO2 through bidentate chelating forms. In contrast, only one carboxyl group of the o‐DAs coordinated to TiO2 in a bidentate chelating manner, whereas the other formed a monodentate binding linkage. The bidentate chelating form with bilateral symmetric coordination did not favour degradation. Isotope‐labelling experiments were performed with 18O2 to observe the different ways in which incorporated oxygen entered the initial decarboxylated products of e‐ and o‐DAs. For the degradation of butanedioic acid, (45.9±0.5) % of the oxygen in the formed propanedioic acid came from H2O, whereas for pentanedioic acid, (97.4±0.2) % of the oxygen in the formed butanedioic acid came from H2O. Our results demonstrate that in TiO2‐based photocatalysis, the reactivity of active species, such as . OH/hvb+, is far from non‐selective and that the attacks of these active species on organic substrates are significantly affected by the coordination patterns of the substrates on the TiO2 surface.  相似文献   
977.
The doping of carbon quantum dots with nitrogen provides a promising direction to improve fluorescence performance and broaden their applications in sensing systems. Herein we report a one‐pot solvothermal synthesis of N‐doped carbon quantum dots (NCQDs) and the synthesis of a series of NCQDs with different nitrogen contents. The as‐prepared NCQDs were compared with carbon quantum dots (CQDs); the introduction of nitrogen atoms largely increased the quantum yield of NCQDs and highest emission efficiency is up to 36.3 %. The fluorescence enhancement may originate from more polyaromatic structures induced by incorporated nitrogen atoms and protonation of nitrogen atoms on dots. It was found that NCQDs can act as a multifunctional fluorescence sensing platform because they can be used to detect pH values, AgI, and FeIII in aqueous solution. The fluorescence intensity of NCQDs is inversely proportional to pH values across a broad range from 5.0 to 13.5, which indicates that NCQDs can be devised as an effective pH indicator. Selective detection of AgI and FeIII was achieved based on their distinctive fluorescence influence because AgI can significantly enhance the fluorescence whereas FeIII can greatly quench the fluorescence. The quantitative determination of AgI can be accomplished with NCQDs by using the linear relationship between fluorescence intensity of NCQDs and concentration of AgI. The sensitive detection of H2O2 was developed by taking advantage of the distinct quenching ability of FeIII and FeII toward the fluorescence of NCQDs. Cellular toxicity test showed NCQDs still retain low toxicity to cells despite the introduction of a great deal of nitrogen atoms. Moreover, bioimaging experiments demonstrated that NCQDs have stronger resistance to photobleaching than CQDs and more excellent fluorescence labeling performance.  相似文献   
978.
The new diimine fluorescent ligand ACRI‐1 based on a central acridine yellow core is reported along with its coordination complex [Co2( ACRI‐1 )2] ( 1 ), a fluorescent weak ferromagnet. Due to the strong fluorescence of the acridine yellow fluorophore, it is not completely quenched when the ligand is coordinated to CoII. The magnetic properties of bulk complex 1 and its stability in solution have been studied. Complex 1 has been deposited on highly ordered pyrolitic graphite (HOGP) from solution. The thin films prepared have been characterized by AFM, time‐of‐flight secondary ion mass spectrometry (TOF‐SIMS), grazing incidence X‐ray diffraction (GIXRD), X‐ray absorption spectroscopy (XAS), X‐ray magnetic circular dichroism (XMCD) and theoretical calculations. The data show that the complex is robust and remains intact on the surface of graphite.  相似文献   
979.
The correspondence between triplet location effect and host‐localized triplet–triplet annihilation and triplet–polaron quenching effects was performed on the basis of a series of naphthyldiphenylamine (DPNA)‐modified phosphine oxide hosts. The number and ratio of DPNA and diphenylphosphine oxide was adjusted to afford symmetrical and unsymmetrical molecular structures and different electronic environments. As designed, the first triplet (T1) states were successfully localized on the specific DPNA chromophores. Owing to the meso‐ and multi‐insulating linkages, identical optical properties and comparable electrical performance was observed, including the same first singlet (S1) and T1 energy levels to support the similar singlet and triplet energy transfer and the close frontier molecular orbital energy levels. This established the basis of rational investigation on T1 location effect without interference from other optoelectronic factors.  相似文献   
980.
A new oligosiloxane derivative (ODCzMSi) functionalized with the well‐known 1,3‐bis(9‐carbazolyl)benzene (mCP) pendant moiety, directly linked to the silicon atom of the oligosiloxane backbone, has been synthesized and characterized. Compared to mCP, the attachment of the oligosiloxane chain significantly improves the thermal and morphological stabilities with a high decomposition temperature (Td=540 °C) and glass transition temperature (Tg=142 °C). The silicon–oxygen linkage of ODCzMSi disrupts the backbone conjugation and maintains a high triplet energy level (ET=3.0 eV). A phosphorescent organic light‐emitting diode (PhOLED) using iridium bis(4,6‐difluorophenyl)pyridinato‐N,C2 picolinate (FIrpic) as the emitter and ODCzMSi as the host shows a relatively low turn‐on voltage of 5.0 V for solution‐processed PhOLEDs, maximum external quantum efficiency of 9.2 %, and maximum current efficiency of 17.7 cd A?1. The overall performance of this device is competitive with the best reported solution‐processed blue PhOLEDs. Memory devices using ODCzMSi as an active layer exhibit non‐volatile write‐once read‐many‐times (WORM) characteristics with high stability in retention time up to 104 s and a low switch on voltage. This switching behaviour is explained by different stable conformations of ODCzMSi with high or low conductivity states which are obtained under the action of electric field through a π–π stacking alignment of the pendant aromatic groups. These results with both PhOLEDs and memory devices demonstrate that this oligosiloxane–mCP hybrid structure is promising and versatile for high performance solution‐processed optoelectronic applications.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号