首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   36340篇
  免费   4960篇
  国内免费   4076篇
化学   19709篇
晶体学   333篇
力学   1664篇
综合类   273篇
数学   3128篇
物理学   10479篇
无线电   9790篇
  2024年   133篇
  2023年   874篇
  2022年   1051篇
  2021年   1343篇
  2020年   1395篇
  2019年   1291篇
  2018年   1025篇
  2017年   1034篇
  2016年   1482篇
  2015年   1511篇
  2014年   1808篇
  2013年   2395篇
  2012年   2864篇
  2011年   2773篇
  2010年   2008篇
  2009年   2022篇
  2008年   2324篇
  2007年   2133篇
  2006年   2061篇
  2005年   1767篇
  2004年   1362篇
  2003年   1167篇
  2002年   1037篇
  2001年   836篇
  2000年   872篇
  1999年   950篇
  1998年   817篇
  1997年   695篇
  1996年   718篇
  1995年   595篇
  1994年   558篇
  1993年   461篇
  1992年   399篇
  1991年   334篇
  1990年   321篇
  1989年   202篇
  1988年   161篇
  1987年   129篇
  1986年   127篇
  1985年   106篇
  1984年   58篇
  1983年   48篇
  1982年   46篇
  1981年   34篇
  1980年   16篇
  1979年   12篇
  1973年   3篇
  1969年   2篇
  1967年   2篇
  1957年   4篇
排序方式: 共有10000条查询结果,搜索用时 0 毫秒
101.
Polydimethylsiloxanes (PDMS) foam as one of next-generation polymer foam materials shows poor surface adhesion and limited functionality, which greatly restricts its potential applications. Fabrication of advanced PDMS foam materials with multiple functionalities remains a critical challenge. In this study, unprecedented self-adhesive PDMS foam materials are reported with worm-like rough structure and reactive groups for fabricating multifunctional PDMS foam nanocomposites decorated with MXene/cellulose nanofiber (MXene/CNF) interconnected network by a facile silicone foaming and dip-coating strategy followed by silane surface modification. Interestingly, such self-adhesive PDMS foam produces strong interfacial adhesion with the hybrid MXene/CNF nano-coatings. Consequently, the optimized PDMS foam nanocomposites have excellent surface super-hydrophobicity (water contact angle of ≈159o), tunable electrical conductivity (from 10−8 to 10 S m−1), stable compressive cyclic reliability in both wide-temperature range (from −20 to 200 oC) and complex environments (acid, sodium, and alkali conditions), outstanding flame resistance (LOI value of >27% and low smoke production rate), good thermal insulating performance and reliable strain sensing in various stress modes and complex environmental conditions. It provides a new route for the rational design and development of advanced PDMS foam nanocomposites with versatile multifunctionalities for various promising applications such as intelligent healthcare monitoring and fire-safe thermal insulation.  相似文献   
102.
Material design of guest acceptor is always a big challenge for improving the efficiency of ternary organic solar cells (OSCs). Here, a pair of isomeric nonfullerene acceptors based on quinoxaline core, Qx–p-C7H8O and Qx–m-C7H8O, is designed and synthesized. By moving the alkoxy chain attached on side phenyl from meta-position to para-position, both π–π stacking distance and crystallinity are enhanced simultaneously. They obtain the uplifted lowest unoccupied molecular orbital level. Compared to Qx–m-C7H8O, Qx–p-C7H8O exhibits wider absorption spectrum and higher extinction coefficient. Using D18-Cl:N3 as host materials, the addition of guest acceptor Qx–p-C7H8O significantly improves the power conversion efficiency (PCE) from 17.61% to 18.49% because of higher open-circuit voltage (0.875 V) and short-circuit current density (27.85 mA cm−2). This can be attributed to the faster exciton dissociation, more balanced carrier mobility, fine fiber morphology, and lower energy loss in the ternary devices. However, Qx–m-C7H8O-based ternary device achieves relatively low PCE of 17.17% because this device shows extremely low electron mobility. The results indicate that molecular stacking, film morphology, etc., can be effectively modulated by fine-tuning the side chains of guest materials, which may be an effective design rule for further improving the PCE of OSCs.  相似文献   
103.
Aqueous Zn-ion batteries (AZIBs) are promising due to their high theoretical energy density and intrinsic safety, and the natural abundance of Zn. Since low voltage is an intrinsic shortage of AZIBs, achieving super-high capacity of cathode materials is a vital way to realize high practical energy density, which however remains a huge challenge. Herein, the capacity increase of classical vanadium oxide cathode is predicted via designing atomic thickness of 2D structure to introduce abundant Zn2+ storage sites based on density functional theory (DFT) calculation; then graphene-analogous V2O5·nH2O (GAVOH) with only few atomic layers is fabricated, realizing a record capacity of 714 mAh g−1. Pseudocapacitive effect is unveiled to mainly contribute to the super-high capacity due to the highly exposed GAVOH external surface. In situ Raman and synchrotron X-ray techniques unambiguously uncover the Zn2+ storage mechanism. Carbon nanotubes (CNTs) are further introduced to design GAVOH-CNTs gel ink for large-scale cathode fabrication. The hybrid cathode demonstrates ultra-stable cycling and excellent rate capability and delivers a high energy density of 476 Wh kg−1 at 76 W kg−1; 228 Wh kg−1 is still retained at high mass loading of 10.2 mg cm−2. This work provides inspiration for breaking the capacity limit of cathode in AZIBs.  相似文献   
104.
Radiotherapy is identified as a crucial treatment for patients with glioblastoma, but recurrence is inevitable. The efficacy of radiotherapy is severely hampered partially due to the tumor evolution. Growing evidence suggests that proneural glioma stem cells can acquire mesenchymal features coupled with increased radioresistance. Thus, a better understanding of mechanisms underlying tumor subclonal evolution may develop new strategies. Herein, data highlighting a positive correlation between the accumulation of macrophage in the glioblastoma microenvironment after irradiation and mesenchymal transdifferentiation in glioblastoma are presented. Mechanistically, elevated production of inflammatory cytokines released by macrophages promotes mesenchymal transition in an NF-κB-dependent manner. Hence, rationally designed macrophage membrane-coated porous mesoporous silica nanoparticles (MMNs) in which therapeutic anti-NF-κB peptides are loaded for enhancing radiotherapy of glioblastoma are constructed. The combination of MMNs and fractionated irradiation results in the blockage of tumor evolution and therapy resistance in glioblastoma-bearing mice. Intriguingly, the macrophage invasion across the blood-brain barrier is inhibited competitively by MMNs, suggesting that these nanoparticles can fundamentally halt the evolution of radioresistant clones. Taken together, the biomimetic MMNs represent a promising strategy that prevents mesenchymal transition and improves therapeutic response to irradiation as well as overall survival in patients with glioblastoma.  相似文献   
105.
Tailoring inorganic components of cathode electrolyte interphase (CEI) and solid electrolyte interphase (SEI) is critical to improving the cycling performance of lithium metal batteries. However, it is challenging due to complicated electrolyte reactions on cathode/anode surfaces. Herein, the species and inorganic component content of the CEI/SEI is enriched with an objectively gradient distribution through employing pentafluorophenyl 4-nitrobenzenesulfonate (PFBNBS) as electrolyte additive guided by engineering bond order with functional groups. In addition, a catalytic effect of LiNi0.6Mn0.2Co0.2O2 (NCM622) cathode is proposed on the decomposition of PFBNBS. PFBNBS with lower highest occupied molecular orbital can be preferentially oxidized on the NCM622 surface with the help of the catalytic effect to induce an inorganic-rich CEI for superior electrochemical performance at high voltage. Moreover, PFBNBS can be reduced on the Li surface due to its lower lowest unoccupied molecular orbital , increasing inorganic moieties in SEI for inhibiting Li dendrite generation. Thus, 4.5 V Li||NCM622 batteries with such electrolyte can retain 70.4% of initial capacity after 500 cycles at 0.2 C, which is attributed to the protective effect of the excellent CEI on NCM622 and the inhibitory effect of its derived CEI/SEI on continuous electrolyte decomposition.  相似文献   
106.
The accumulation of reactive oxygen species (ROS) and minimal osteogenic raw material in the osteoporotic bone microenvironment greatly inhibits the activity of osteoblasts. Herein, it is originally proposed to construct a biomatrix multifaceted bone microenvironment amendment -Mineralized zippered G4-Hemin DNAzyme hydrogel (MDH)-to improve osteoporotic osteogenic capacity and promote high-quality bone defect repair. The programmed design of the rolling circle amplified DNA hydrogel synthesis system allows the introduction of massive amounts of zippered G4-Hemin DNAzyme in MDH. The zippered G4-Hemin DNAzyme highly mimics the tight catalytic configuration of horseradish peroxidase and exerts excellent enzyme-like activity with considerable ROS molecule scavenging ability. In addition, the DNA amplification by-product pyrophosphate is ingeniously employed as a sufficient phosphorus source, thus constituting an autonomous mineralization system for waste reuse through the introduction of pyrophosphate hydrolase and calcium ions, which deposits in MDH as an osteogenic raw material and addresses the challenge of DNA hydrogel bio-application stability. The remarkable in vitro and in vivo outcomes demonstrate that MDH can effectively improve the oxidative stress status of osteoblasts, restore the balance of mitochondrial membrane potential, and reduce apoptosis, ultimately demonstrating superior osteogenic capacity.  相似文献   
107.
Bacterial trapping using nanonets is a ubiquitous immune defense mechanism against infectious microbes. These nanonets can entrap microbial cells, effectively arresting their dissemination and rendering them more vulnerable to locally secreted microbicides. Inspired by this evolutionarily conserved anti-infective strategy, a series of 15 to 16 residue-long synthetic β-hairpin peptides is herein constructed with the ability to self-assemble into nanonets in response to the presence of bacteria, enabling spatiotemporal control over microbial killing. Using amyloid-specific K114 assay and confocal microscopy, the membrane components lipoteichoic acid and lipopolysaccharide are shown to play a major role in determining the amyloid-nucleating capacity as triggered by Gram-positive and Gram-negative bacteria respectively. These nanonets displayed both trapping and killing functionalities, hence offering a direct improvement from the trap-only biomimetics in literature. By substituting a single turn residue of the non-amyloidogenic BTT1 peptide, the nanonet-forming BTT1-3A analog is produced with comparable antimicrobial potency. With the same sequence manipulation approach, BTT2-4A analog modified from BTT2 peptide showed improved antimicrobial potency against colistin-resistant clinical isolates. The peptide nanonets also demonstrated robust stability against proteolytic degradation, and promising in vivo efficacy and biosafety profile. Overall, these bacteria-responsive peptide nanonets are promising clinical anti-infective alternatives for circumventing antibiotic resistance.  相似文献   
108.
Designing and developing visible-light-responsive materials for solar to chemical energy is an efficient and promising approach to green and sustainable carbon-neutral energy systems. Herein, a facile in situ growth hydrothermal strategy using Mo-modified ZnIn2S4 (Mo-ZIS) nanosheets coupled with NiTiO3 (NTO) microrods to synthesize multifunctional Mo-modified ZIS wrapped NTO microrods (Mo-ZIS@NTO) photocatalyst with enhanced interfacial electric field (IEF) effect and typical S-scheme heterojunction is reported. Mo-ZIS@NTO catalyst possesses wide-spectrum light absorption properties, excellent visible light-to-thermal energy effect, electron mobility, charges transfer, and strong IEF and exhibits excellent solar-to-chemical energy conversion for efficient visible-light-driven photocatalytic hydrogen evolution. Notably, the engineered Mo1.4-ZIS@NTO catalyst exhibits superior performance with H2 evolution rate of up to 14.06 mmol g−1 h− 1 and the apparent quantum efficiency of 44.1% at 420 nm. The scientific explorations provide an in-depth understanding of microstructure, S-scheme heterojunction, enhanced IEF, Mo-dopant facilitation effect. Moreover, the theoretical simulations verify the critical role of Mo element in promoting the adsorption and activation of H2O molecules, modulating the H adsorption behavior on active S sites, and thus accelerating the overall catalytic efficiency. The photocatalytic hydrogen evolution mechanism via S-scheme heterojunction with adjustable IEF regulation over Mo1.4-ZIS@NTO is also demonstrated.  相似文献   
109.
Ionic conductive soft materials for mimicking human skin are a promising topic since they can be thought of as a possible basis for biomimetic sensing. In pursuit of devices with a long working range and low signal delay, conductive materials with low hysteresis and good stretchability are highly demanded. To overcome the challenges of highly stretchable conductive materials with good resilience, herein a chemical design is proposed where polyrotaxanes act as topological cross-linkers to enhance the stretchability by sliding-induced reduced stress concentration while the compatible ionic liquid is introduced as a dispersant for low hysteresis. The obtained ionogels exhibit versatile properties more than low hysteresis (residual strain = 7%) and good stretchability (550%), and also anti-fatigue, biocompatibility, and good adhesion. The low hysteresis is attributed to lower energy dissipation from the well-dispersed polyrotaxanes by compatible ionic liquids. The mechanism provides a new insight in fabricating highly stretchable and low-hysteresis slide-ring materials. Furthermore, the conductivity of the ionogels and their responses to strains and temperatures are measured. Benefiting from the good conductivity and low hysteresis, the ionogel is applied to develop a wireless communication system to realize rapid human-machine interactions.  相似文献   
110.
Introducing anionic redox in layered oxides is an effective approach to breaking the capacity limit of conventional cationic redox. However, the anionic redox reaction generally suffers from excessive oxidation of lattice oxygen to O2 and O2 release, resulting in local structural deterioration and rapid capacity/voltage decay. Here, a Na0.71Li0.22Al0.05Mn0.73O2 (NLAM) cathode material is developed by introducing Al3+ into the transition metal (TM) sites. Thanks to the strong Al–O bonding strength and small Al3+ radius, the TMO2 skeleton and the holistic TM–O bonds in NLAM are comprehensively strengthened, which inhibits the excessive lattice oxygen oxidation. The obtained NLAM exhibits a high reversible capacity of 194.4 mAh g-1 at 20 mA g-1 and decent cyclability with 98.6% capacity retention over 200 cycles at 200 mA g−1. In situ characterizations reveal that the NLAM experiences phase transitions with an intermediate OP4 phase during the charge–discharge. Theoretical calculations further confirm that the Al substitution strategy is beneficial for improving the overlap between Mn 3d and O 2p orbitals. This finding sheds light on the design of layered oxide cathodes with highly reversible anionic redox for sodium storage.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号