首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7160篇
  免费   1060篇
  国内免费   753篇
化学   3891篇
晶体学   64篇
力学   325篇
综合类   51篇
数学   617篇
物理学   2003篇
无线电   2022篇
  2024年   27篇
  2023年   207篇
  2022年   182篇
  2021年   269篇
  2020年   291篇
  2019年   210篇
  2018年   198篇
  2017年   199篇
  2016年   302篇
  2015年   306篇
  2014年   386篇
  2013年   458篇
  2012年   534篇
  2011年   579篇
  2010年   429篇
  2009年   436篇
  2008年   400篇
  2007年   418篇
  2006年   381篇
  2005年   343篇
  2004年   259篇
  2003年   195篇
  2002年   226篇
  2001年   180篇
  2000年   151篇
  1999年   168篇
  1998年   171篇
  1997年   163篇
  1996年   151篇
  1995年   114篇
  1994年   131篇
  1993年   88篇
  1992年   81篇
  1991年   74篇
  1990年   49篇
  1989年   61篇
  1988年   46篇
  1987年   41篇
  1986年   14篇
  1985年   18篇
  1984年   9篇
  1983年   9篇
  1982年   5篇
  1981年   9篇
  1980年   2篇
  1979年   1篇
  1957年   2篇
排序方式: 共有8973条查询结果,搜索用时 46 毫秒
141.
Li-rich layered oxides (LLOs) have been considered as the most promising cathode materials for achieving high energy density Li-ion batteries. However, they suffer from continuous voltage decay during cycling, which seriously shortens the lifespan of the battery in practical applications. This review comprehensively elaborates and summarizes the state-of-the-art of the research in this field. It is started from the proposed mechanism of voltage decay that refers to the phase transition, microscopic defects, and oxygen redox or release. Furthermore, several strategies to mitigate the voltage decay of LLOs from different scales, such as surface modification, elemental doping, regulation of components, control of defect, and morphology design are summarized. Finally, a systematic outlook on the real root of voltage decay is provided, and more importantly, a potential solution to voltage recovery from electrochemistry. Based on this progress, some effective strategies with multiple scales will be feasible to create the conditions for their commercialization in the future.  相似文献   
142.
Anode-free batteries can maximize the energy density but their development is hindered by a lack of Li-rich cathodes for compensating the irreversible Li loss. Li2S cathode is particularly appealing to this desire due to 2.6–4.7 folds more Li content and 4.2–6.8 times higher capacity than conventional intercalation cathodes. But its practical application is hindered by poor stability against moisture attacking in the air. Herein, a facile expendable polymer sheathing strategy toward air-stable Li2S cathodes with high capacities for developing high-performance quasi-solid-state anode-free batteries without risk of cell leakage is reported. Tight protection by dense polymer barrier dramatically prolongs the lifetime of Li2S cathode by 2,000 times at least in the air. Such air-stable Li2S cathode allows for high compatibility of anode-free battery production with commercial schemes. More attractively, the polymer protective layer can in situ transform to multifunctional gel polymer electrolyte for releasing ionic pathways and enhancing cell performance by inhibiting LiPS loss and smoothing Li plating. With air-stable Li2S cathode, the quasi-solid-state anode-free cells are assembled in ambient environment to deliver superb volumetric energy density of 1093 Wh L−1. This study may shed new light to push the commercialization of high-energy and reliable anode-free batteries forward.  相似文献   
143.
Construction of high efficiency and stable Li metal anodes is extremely vital to the breakthrough of Li metal batteries. In this study, for the first time, groundbreaking in situ plasma interphase engineering is reported to construct high-quality lithium halides-dominated solid electrolyte interphase layer on Li metal to stabilize & protect the anode. Typically, SF6 plasma-induced sulfured and fluorinated interphase (SFI) is composed of LiF and Li2S, interwoven with each other to form a consecutive solid electrolyte interphase. Simultaneously, brand-new vertical Co fibers (diameter: ≈5 µm) scaffold is designed via a facile magnetic-field-assisted hydrothermal method to collaborate with plasma-enhanced Li metal anodes (SFI@Li/Co). The Co fibers scaffold accommodates active Li with mechanical integrity and decreases local current density with good lithiophilicity and low geometric tortuosity, supported by DFT calculations and COMSOL Multiphysics simulation. Consequently, the assembled symmetric cells with SFI@Li/Co anodes exhibit superior stability over 525 h with a small voltage hysteresis (125 mV at 5 mA cm−2) and improved Coulombic efficiency (99.7%), much better than the counterparts. Enhanced electrochemical performance is also demonstrated in full cells with commercial cathodes and SFI@Li/Co anode. The research offers a new route to develop advanced alkali metal anodes for energy storage.  相似文献   
144.
High current carrying capacity and high conductivity are two important indicators for materials used in microscale electronics and inverters. However, it is challenging to obtain high conductivity and high current carrying capacity at the same time since high conductivity requires a weakly bonded system to provide free electrons, while high current carrying capacity requires a strongly bonded system. In this paper, CuI@SWCNT networks by filling the single-walled carbon nanotubes (SWCNTs) with CuI is ingeniously prepared. CuI@SWCNT shows good stability due to the confinement protection of SWCNTs. Through the host-guest hybridization, CuI@SWCNT networks exhibit a current carrying capacity of 2.04 × 107 A cm−2 and a conductivity of 31.67 kS m−1. Their current carrying capacity and conductivity are significantly improved compared with SWCNT. The Kelvin probe force microscopy measurements show a drop of surface potential energy after SWCNT filled with CuI, indicating that the CuI guest molecules regulate the position of the Fermi level of SWCNTs, increasing carrier concentration, achieving high conductivity and high current carrying capacity. This study offers ideas and solutions for the regulation of high-performance carbon tube networks, which hold great promise for future applications in carbon-based electronic devices.  相似文献   
145.
文中简述了图像处理的各种基本功能及原理,并通过MATLAB的GUI图形用户开发工具,设计了一款基于MATLAB的图像处理仿真系统,该系统包含图像处理的一些常见且实用的功能,如空域滤波中的高斯滤波、中值滤波、均值滤波,频域滤波中的高低通滤波、带阻滤波、同态滤波,还有边缘算子、灰度、二值化、简单直方图等功能。由于MATLAB GUI操作简单,便于扩展,减少了代码编写量,且人机交互性强,图像处理部分功能参数可调,因此在教学、实验、工程中具有较高的应用价值。  相似文献   
146.
A tunable circularly polarized square patch antenna with parasitic elements is designed for a wide frequency tuning range and high gain characteristics. The proposed antenna is constructed by one main patch and four semi-elliptic parasitic units. By loading four varactor diodes and adjusting their capacitance values, the tunable feature is performed to reallocate the corresponding working frequency. Moreover, the diagonal corners of the antenna are cut and loaded with varactor diodes, which provide the appropriate perturbation between the two orthogonality modes of the antenna, so as to ensure the circular polarization characteristic in the entire operating tuning band. The experimental results demonstrate that the reflection coefficient and axial ratio are less than −13 dB and 3 dB, respectively. The proposed antenna features a relatively wide continuously tuning range of 24% within 1.9-2.3 GHz and a stable gain of over 7 dBi with a radiation efficiency of above 85%.  相似文献   
147.
In this study, a series of donor–acceptor–donor (D-A-D) type small molecules based on the fluorene and diphenylethenyl enamine units, which are distinguished by different acceptors, as holetransporting materials (HTMs) for perovskite solar cells is presented. The incorporation of the malononitrile acceptor units is found to be beneficial for not only carrier transportation but also defects passivation via Pb–N interactions. The highest power conversion efficiency of over 22% is achieved on cells based on V1359, which is higher than that of spiro-OMeTAD under identical conditions. This st shows that HTMs prepared via simplified synthetic routes are not only a low-cost alternative to spiro-OMeTAD but also outperform in efficiency and stability state-of-art materials obtained via expensive cross-coupling methods.  相似文献   
148.
149.
Metal micropatterns play critical roles in flexible electronics. However, the lack of versatile strategies for micropatterning of diverse metal materials on various thin, flexible or stretchable substrates has limited the rapid development of flexible electronics. Here, a metal micropatterning method by triboelectric spark discharge under atmospheric environment is developed, where a triboelectric nanogenerator (TENG) is employed to precisely and safely control the voltage, current, and frequency of the spark discharges. Micropatterns of metal films like gold, silver, copper, aluminum and platinum are successfully fabricated on substrates of polyimide, polyethylene terephthalate, polyvinyl chloride, polydimethylsiloxane, paper or latex, even on ultrathin substrates (5 μm thick) without damage, where the feature sizes of metal patterns are controllable from 20 μm to 1 mm. Experimental insights into the triboelectric spark discharge behaviors and the pattern feature sizes control are discussed. A straightforward fabrication of metal patterns on the balloon surface or human skin through “handwriting” by a pencil as discharge electrode is realized. Besides metals, extended processibility of conductive materials like carbon nanotubes, graphene, MXene, graphite, carbon fibers, and conductive polymers are also demonstrated. This work proves the possibility of microfabrication by TENG, which is of simplicity and attractiveness for flexible electronics.  相似文献   
150.
本文用偏最小二乘法(PLS)校正了火焰原子吸收分析In252.137nm对Co252.136nm的吸收线重叠干扰,对混合样中Co和In的含量进行了测定,结果令人满意。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号