首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   31624篇
  免费   4878篇
  国内免费   4085篇
化学   17354篇
晶体学   256篇
力学   1263篇
综合类   249篇
数学   2923篇
物理学   8911篇
无线电   9631篇
  2024年   89篇
  2023年   771篇
  2022年   917篇
  2021年   1234篇
  2020年   1286篇
  2019年   1310篇
  2018年   1011篇
  2017年   1051篇
  2016年   1384篇
  2015年   1502篇
  2014年   1799篇
  2013年   2253篇
  2012年   2727篇
  2011年   2682篇
  2010年   1994篇
  2009年   2014篇
  2008年   2190篇
  2007年   1917篇
  2006年   1732篇
  2005年   1460篇
  2004年   1089篇
  2003年   935篇
  2002年   976篇
  2001年   802篇
  2000年   728篇
  1999年   731篇
  1998年   570篇
  1997年   488篇
  1996年   484篇
  1995年   415篇
  1994年   350篇
  1993年   327篇
  1992年   248篇
  1991年   208篇
  1990年   184篇
  1989年   136篇
  1988年   128篇
  1987年   81篇
  1986年   70篇
  1985年   85篇
  1984年   47篇
  1983年   39篇
  1982年   41篇
  1981年   20篇
  1980年   13篇
  1979年   14篇
  1978年   8篇
  1977年   9篇
  1976年   10篇
  1972年   5篇
排序方式: 共有10000条查询结果,搜索用时 46 毫秒
31.
32.
33.
DFT computations have been performed to investigate the mechanism of H2‐assisted chain transfer strategy to functionalize polypropylene via Zr‐catalyzed copolymerization of propylene and p‐methylstyrene (pMS). The study unveils the following: (i) propylene prefers 1,2‐insertion over 2,1‐insertion both kinetically and thermodynamically, explaining the observed 1,2‐insertion regioselectivity for propylene insertion. (ii) The 2,1‐inserion of pMS is kinetically less favorable but thermodynamically more favorable than 1,2‐insertion. The observation of 2,1‐insertion pMS at the end of polymer chain is due to thermodynamic control and that the barrier difference between the two insertion modes become smaller as the chain length becomes longer. (iii) The pMS insertion results in much higher barriers for subsequent either propylene or pMS insertion, which causes deactivation of the catalytic system. (iv) Small H2 can react with the deactivated [Zr]?pMS?PPn facilely, which displace functionalized pMS?PPn chain and regenerate [Zr]? H active catalyst to continue copolymerization. The effects of counterions are also discussed. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 576–585  相似文献   
34.
Fully utilizing solar energy for catalysis requires the integration of conversion mechanisms and therefore delicate design of catalyst structures and active species. Herein, a MOF crystal engineering method was developed to controllably synthesize a copper–ceria catalyst with well-dispersed photoactive Cu-[O]-Ce species. Using the preferential oxidation of CO as a model reaction, the catalyst showed remarkably efficient and stable photoactivated catalysis, which found practical application in feed gas treatment for fuel cell gas supply. The coexistence of photochemistry and thermochemistry effects contributes to the high efficiency. Our results demonstrate a catalyst design approach with atomic or molecular precision and a combinatorial photoactivation strategy for solar energy conversion.  相似文献   
35.
A sensitive and reliable LC–MS/MS method was developed and validated for simultaneous quantification of the major components of Huangqi–Honghua extact in rat plasma, including hydroxysafflor yellow A (HSYA), astragaloside IV (ASIV), calycosin‐7‐O‐β‐d ‐glucoside (CAG), calycosin, calycosin‐3′‐O‐glucuronide (C‐3′‐G) and calycosin‐3′‐O‐sulfate (C‐3′‐S). After extraction by protein precipitation with acetonitrile and methanol from plasma, the analytes were separated on a Hypersil BDS C18 column by gradient elution with acetonitrile and 5 mM ammonium acetate. The detection was carried out on a triple quadrupole tandem mass spectrometer equipped with electrospray ionization source switched between negative and positive modes. HSYA was monitored in negative ionization mode from 0 to 4.9 min, and ASIV, CAG, calycosin, C‐3′‐G and C‐3′‐S were determined in positive ionization mode from 4.9 to 10 min. The lower limits of quantification of the analytes were 6.25 ng/mL for HSYA, 0.781 ng/mL for CAG and 1.56 ng/mL for ASIV and calycosin. The intra‐ and inter‐assay precision (RSD) values were within 13.43%, and accuracy (RE) ranged from ?8.75 to 9.92%. The validated method was then applied to the pharmacokinetic study of HSYA, ASIV, CAG, calycosin, C‐3′‐G and C‐3′‐S in rat after an oral administration of Huangqi–Honghua extract.  相似文献   
36.
Iridium complexes bearing chelating cyclometalates are popular choices as dopant emitters in the fabrication of organic light-emitting diodes (OLEDs). In this contribution, we report a series of blue-emitting, bis-tridentate IrIII complexes bearing chelates with two fused five-six-membered metallacycles, which are in sharp contrast to the traditional designs of tridentate chelates that form the alternative, fused five-five metallacycles. Five IrIII complexes, Px-21 – 23 , Cz-4 , and Cz-5 , have been synthesized that contain a coordinated dicarbene pincer chelate incorporating a methylene spacer and a dianionic chromophoric chelate possessing either a phenoxy or carbazolyl appendage to tune the coordination arrangement. All these tridentate chelates afford peripheral ligand–metal–ligand bite angles of 166–170°, which are larger than the typical bite angle of 153–155° observed for their five-five-coordinated tridentate counterparts, thereby leading to reduced geometrical distortion in the octahedral frameworks. Photophysical measurements and TD-DFT studies verified the inherent transition characteristics that give rise to high emission efficiency, and photodegradation experiments confirmed the improved stability in comparison with the benchmark fac-[Ir(ppy)3] in degassed toluene at room temperature. Phosphorescent OLED devices were also fabricated, among which the carbazolyl-functionalized emitter Cz-5 exhibited the best performance among all the studied bis-tridentate phosphors, showing a maximum external quantum efficiency (EQEmax) of 18.7 % and CIEx,y coordinates of (0.145, 0.218), with a slightly reduced EQE of 13.7 % at 100 cd m−2 due to efficiency roll-off.  相似文献   
37.
An unprecedented Mn(I)-catalyzed selective hydroarylation and hydroalkenylation of unsaturated amides with commercially available organic boronic acids is reported. Alkenyl boronic acids have been successfully employed for the first time in Mn(I)-catalyzed carbon–carbon bond formation. A wide array of β-alkenylated amide products can be obtained in moderate to good yields, which offers practical access to five- and six-membered lactams. This protocol has predictable regio- and chemoselectivity, excellent functional group compatibility and ease of operation in air, representing a significant step-forward towards manganese-catalyzed C−C coupling.  相似文献   
38.
Understanding and control of the surface properties such as molecular orientations are of great importance in numerous applications of ionic liquids. However, there remain discrepancies among the previous experimental and theoretical studies on the surface orientation and structures of room temperature ionic liquids(RTIL) systems. In this article, the orientation of 1-butyl-3-methylimidazolium([bmin]) cation at the air/liquid interface of a characteristic RTIL, 1-butyl-3-methylimidazolium hexafluorophosphate([bmim][PF6]), was investigated by the sum frequency generation vibrational spectroscopy(SFG-VS). Detailed polarization and experimental configuration analyses of the SFG-VS spectra showed the possibility of a small spectral splitting in the CH3 symmetric stretching region, which can be further attributed to the probable existence of multiple orientations for the interfacial [bmim] cations. In addition, the(N)–CH3 vibrations were absent, ruling out the prediction by several recent molecular dynamics simulations which state that portions of the [bmim] cations orient with a standing-up(N)–CH3 group at the ionic liquid surface. Hence, new realistic theoretical models have to be developed to reflect the complex nature of the ionic liquid surface.  相似文献   
39.
40.
The {100} facet of single-crystalline TiO2(B) is an ideal platform for inserting Li ions, but it is hard to be obtained due to its high surface energy. Here, the single-crystalline TiO2(B) nanobelts from H2Ti3O7 with nearly 70% {100} facets exposed are synthesized, which significantly enhances Li-storage capacity. The first-principle calculations demonstrate an ab in-plane 2D diffusion through the exposed {100} facets. As a consequence, the nanobelts can significantly accommodate Li ions in LiTiO2 formula with specific capacity up to 335 mAh g−1, which is in good agreement with the electrochemical characterizations. Coating with conductive and protective poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate), the cut-off discharge voltage is as low as 0.5 V, leading to a capacity of 160.7 mAh g−1 after 1500 cycles with a retention rate of 66% at 1C. This work provides a practical strategy to increase the Li-ion capacity and cycle stability by tailoring the crystal orientation and nanostructures.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号