首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   532篇
  免费   44篇
  国内免费   1篇
化学   394篇
晶体学   2篇
力学   21篇
数学   50篇
物理学   49篇
无线电   61篇
  2023年   6篇
  2022年   6篇
  2021年   12篇
  2020年   26篇
  2019年   18篇
  2018年   19篇
  2017年   8篇
  2016年   19篇
  2015年   23篇
  2014年   34篇
  2013年   37篇
  2012年   50篇
  2011年   45篇
  2010年   26篇
  2009年   25篇
  2008年   32篇
  2007年   30篇
  2006年   33篇
  2005年   30篇
  2004年   28篇
  2003年   24篇
  2002年   15篇
  2001年   4篇
  2000年   5篇
  1999年   1篇
  1998年   5篇
  1997年   1篇
  1993年   2篇
  1992年   2篇
  1991年   1篇
  1988年   2篇
  1985年   2篇
  1984年   1篇
  1983年   1篇
  1982年   2篇
  1981年   2篇
排序方式: 共有577条查询结果,搜索用时 281 毫秒
31.
Periodic arrays of micro‐ or nanopillars constitute solid‐state matrices with excellent properties for DNA size separation. Nanofabrication technologies offer many solutions to tailor the geometry of obstacle arrays, yet most studies have been conducted with cylinders arranged in hexagonal lattices. In this report, we investigate the dynamics of single DNA collision with elliptical nanoposts using hydrodynamic actuation. Our data show that the asymmetry of the obstacles has minor effect on unhooking dynamics, and thus confirm recent predictions obtained by Brownian dynamics simulations. In addition, we show that the disengagement dynamics are correctly predicted by models of electrophoresis, and propose that this consistency is associated to the confinement in slit‐like channels. We finally conclude that elliptical posts are expected to marginally improve the performances of separation devices.  相似文献   
32.
Synthetic ditopic receptors, designed for the molecular recognition of dimannosides, have been prepared by bridging two monotopic units effectively recognizing mannosides with linkers of the appropriate size and flexibility, endowed with hydrogen‐bonding groups. Affinities toward the α and β glycosides of the biologically relevant Manα(1–2)Man disaccharide were measured by NMR spectroscopy and isothermal titration calorimetry (ITC) in polar organic media (30–40 % DMF in chloroform). Significant selectivities and affinities in the micromolar range were observed in most cases, with two newly designed receptors being the most effective receptors of the set, together with a distinct preference of the dimannosides for the (S) enantiomer of the receptor in all cases. A 3D view of the recognition mode was elucidated by a combined NMR spectroscopic/molecular modeling approach, showing the dimannoside included in the cleft of the receptor. Compared to the monotopic precursors, the ditopic receptors showed markedly improved recognition properties, proving the efficacy of the modular receptor design for the recognition of disaccharides.  相似文献   
33.
Oxidative addition plays a major role in transition‐metal catalysis, but this elementary step remains very elusive in gold chemistry. It is now revealed that in the presence of GaCl3, phosphine gold chlorides promote the oxidative addition of disilanes at low temperature. The ensuing bis(silyl) gold(III) complexes were characterized by quantitative 31P and 29Si NMR spectroscopy. Their structures (distorted Y shape) and the reaction profile of σ(Si? Si) bond activation were analyzed by DFT calculations. These results provide evidence for the intermolecular oxidative addition of σ(Si? Si) bonds to gold and open promising perspectives for the development of new gold‐catalyzed redox transformations.  相似文献   
34.
The synthesis of a series of NiII–salen‐based complexes with the general formula of [Ni(H2L)] (H4L=R2N,N′‐bis[R1‐5‐(4′‐benzoic acid)salicylidene]; H4L1: R2=2,3‐diamino‐2,3‐dimethylbutane and R1=H; H4L2: R2=1,2‐diaminoethane and R1=tert‐butyl and H4L3: R2=1,2‐diaminobenzene and R1=tert‐butyl) is presented. Their electronic structure and self‐assembly was studied. The organic ligands of the salen complexes are functionalized with peripheral carboxylic groups for driving molecular self‐assembly through hydrogen bonding. In addition, other substituents, that is, tert‐butyl and diamine bridges (2,3‐diamino‐2,3‐dimethylbutane, 1,2‐diaminobenzene or 1,2‐diaminoethane), were used to tune the two‐dimensional (2D) packing of these building blocks. Density functional theory (DFT) calculations reveal that the spatial distribution of the LUMOs is affected by these substituents, in contrast with the HOMOs, which remain unchanged. Scanning tunneling microscopy (STM) shows that the three complexes self‐assemble into three different 2D nanoarchitectures at the solid–liquid interface on graphite. Two structures are porous and one is close‐packed. These structures are stabilized by hydrogen bonds in one dimension, while the 2D interaction is governed by van der Waals forces and is tuned by the nature of the substituents, as confirmed by theoretical calculations. As expected, the total dipolar moment is minimized  相似文献   
35.
Herein, we provide some structural evidence of the complexation color‐change of murexide solutions in presence of lanthanide, which has been used for decades in complexometric studies. For Ln=Sm to Lu and Y, the compounds crystallize as monomeric [Ln(Murex)3] ? 11 H2O with an N3O6 tricapped square‐antiprism environment, which are stable up to 250 °C. Single‐ion magnet (SIM) behavior is then observed on the YbIII derivative in an original nine‐coordinated environment. In‐field slow relaxation (Δ=(15.6±1) K; τ0=2.73×10?6 s) is observed with a very narrow distribution of the relaxation time (αmax=0.09). Magnetic and photophysical properties can be correlated. On one hand the analysis of NIR emission spectrum permits to have access to crystal field parameters and to compare them with those extracted from dc measurements. On the other hand, magnetic measurements permit to identify the nature of the M J states involved in the 2F5/22F7/2 luminescence spectrum. The gap between the low‐lying states is in agreement with the energy barrier obtained from magnetic slow‐relaxation measurement.  相似文献   
36.
The activation behavior of two N‐heterocyclic carbenes (NHCs), namely, 1,3‐bis(isopropyl)imidazol‐2‐ylidene(NHCiPr) and 1,3‐bis(tert‐butyl) imidazol‐2‐ylidene (NHCtBu), as organic nucleophiles in the reaction with methyl methacrylate (MMA) is described. NHCtBu allows the polymerization of MMA in DMF at room temperature and in toluene at 50 °C, whereas NHCiPr reacts with two molecules of MMA, forming an unprecedented imidazolium–enolate cyclodimer (NHCiPr/MMA=1:2). It is proposed that the reaction mechanism occurs by initial 1,4‐nucleophilic addition of NHCiPr to MMA, generating a zwitterionic enolate 2 , followed by addition of 2 to a second MMA molecule, forming a linear imidazolium–enolate 3 (NHCiPr/MMA=1:2). Proton transfer, generating intermediate 5 , followed by cyclization and release of methanol yielded the aforementioned zwitterionic cyclodimer 1:2 adduct 7 , the molecular structure of which has been established by NMR spectroscopy, X‐ray diffraction, and mass spectrometry. This unexpected difference between NHCtBu and NHCiPr in the reaction with MMA (polymerization and cyclodimerization, respectively) can be rationalized by using DFT calculations. In particular, the nature of the NHC strongly influences the cyclodimerization pathway, the cyclization of 5 and the release of methanol are the discriminating step and limiting step, respectively. In the case of NHCtBu, both steps are strongly disfavoured compared with that of NHCiPr (energetic difference of around 14 and 9 kcal mol?1, respectively), preventing the cyclization mechanism from a kinetic viewpoint. Moreover, addition of a third molecule of MMA in the polymerization pathway results in a lower activation barrier than that of the limiting step in the cyclodimerization pathway (difference of around 14 kcal mol?1), in agreement with the formation of polymethyl methacrylate (PMMA) by using NHCtBu as nucleophile.  相似文献   
37.
Ion implantation has the advantage of being a unidirectional doping technique. Unlike gaseous diffusion, this characteristic highlights strong possibilities to simplify solar cell process flows. The use of ion implantation doping for n‐type PERT bifacial solar cells is a promising process, but mainly if it goes with a unique co‐annealing step to activate both dopants and to grow a SiO2 passivation layer. To develop this process and our SONIA cells, we studied the impact of the annealing temperature and that of the passivation layers on the electrical quality of the implanted B‐emitter and P‐BSF. A high annealing temperature (above 1000 °C) was necessary to fully activate the boron atoms and to anneal the implantation damages. Low J0BSF (BSF contribution to the saturation current density) of 180 fA/cm2 was reached at this high temperature with the best SiO2 passivation layer. An average efficiency of 19.7% was reached using this simplified process flow (“co‐anneal process”) on large area (239 cm2) Cz solar cells. The efficiency was limited by a low FF, probably due to contaminations by metallization pastes. Improved performances were achieved in the case of a “separated anneals” process where the P‐BSF is activated at a lower temperature range. An average efficiency of 20.2% was obtained in this case, with a 20.3% certified cell. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
38.
We report the dramatic impact of the addition of N-heterocyclic carbenes (NHCs) on the reactivity and selectivity of heterogeneous Ru catalysts in the context of C−H activation reactions. Using a simple and robust method, we prepared a series of new air-stable catalysts starting from commercially available Ru on carbon (Ru/C) and differently substituted NHCs. Associated with C−H deuteration processes, depending on Ru/C-NHC ratios, the chemical outcome can be controlled to a large extent. Indeed, tuning the reactivity of the Ru catalyst with NHC enabled: 1) increased chemoselectivity and the regioselectivity for the deuteration of alcohols in organic media; 2) the synthesis of fragile pharmaceutically relevant deuterated heterocycles (azine, purine) that are otherwise completely reduced using unmodified commercial catalysts; 3) the discovery of a novel reactivity for such heterogeneous Ru catalysts, namely the selective C-1 deuteration of aldehydes.  相似文献   
39.
While chemotherapy is one of the most used treatments in oncology, the systemic administration of chemotherapeutics generally results in undesired damages to healthy tissues and cells, side effects such as severe nausea and leukopenia, and reduced efficacy due to multidrug resistance and poor target accessibility. The limitations of conventional chemotherapy formulation have prompted the development of alternative nanomaterials-based strategies to achieve targeted and stimuli sensitive payload delivery to reach optimal local drug concentration at tumor sites. In this study, the anticancer drug chlorambucil (Clb) was conjugated to the surface of silica coated lithium niobate (LNO) harmonic nanoparticles (HNPs) using a photocaging tether based on coumarin-4-yl methyl derivative. Upon laser pulsed femtosecond irradiation at 790 nm, the second harmonic emission from the metal oxide core induced the efficient release of Clb, with concomitant contribution from the nonlinear absorption of the coumarin (CM)-based moiety.  相似文献   
40.
In this work, we present and analyse the flow-sensing part of a recently-developed multisensor in LTCC (low-temperature co-fired ceramic) technology; this device integrates flow/pressure/temperature sensing and is designed for diagnostics monitoring of standard industrial compressed air circuits and devices such as valves and actuators. In this prototype, flow is sensed using the constant-temperature anemometric principle, with temperature-sensing active and reference thermistors placed in the fluidic channel integrated within the LTCC structure. The LTCC bridge structuration technology and electronics are analysed, and possible improvements in fabrication yield and efficiency outlined.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号