首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1472060篇
  免费   32120篇
  国内免费   8194篇
化学   632131篇
晶体学   19946篇
力学   73683篇
综合类   108篇
数学   237389篇
物理学   355016篇
无线电   194101篇
  2021年   14702篇
  2020年   17322篇
  2019年   17473篇
  2016年   28928篇
  2015年   21556篇
  2014年   32660篇
  2013年   78425篇
  2012年   37021篇
  2011年   31410篇
  2010年   37730篇
  2009年   43131篇
  2008年   35570篇
  2007年   31847篇
  2006年   40574篇
  2005年   31587篇
  2004年   34003篇
  2003年   32655篇
  2002年   34060篇
  2001年   33197篇
  2000年   30055篇
  1999年   28250篇
  1998年   27199篇
  1997年   27142篇
  1996年   26728篇
  1995年   24567篇
  1994年   24002篇
  1993年   23363篇
  1992年   22981篇
  1991年   23186篇
  1990年   22010篇
  1989年   21626篇
  1988年   20807篇
  1987年   19626篇
  1986年   18374篇
  1985年   24910篇
  1984年   26158篇
  1983年   22133篇
  1982年   23566篇
  1981年   22766篇
  1980年   22008篇
  1979年   21874篇
  1978年   23166篇
  1977年   22732篇
  1976年   22240篇
  1975年   20898篇
  1974年   20507篇
  1973年   20979篇
  1972年   15203篇
  1968年   12941篇
  1967年   13055篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
871.
The resistance of metal–organic frameworks towards water is a very critical issue concerning their practical use. Recently, it was shown for microporous MOFs that the water stability could be increased by introducing hydrophobic pendant groups. Here, we demonstrate a remarkable stabilisation of the mesoporous MOF Al‐MIL‐101‐NH2 by postsynthetic modification with phenyl isocyanate. In this process 86 % of the amino groups were converted into phenylurea units. As a consequence, the long‐term stability of Al‐MIL‐101‐URPh in liquid water could be extended beyond a week. In water saturated atmospheres Al‐MIL‐101‐URPh decomposed at least 12‐times slower than the unfunctionalised analogue. To study the underlying processes both materials were characterised by Ar, N2 and H2O sorption measurements, powder X‐ray diffraction, thermogravimetric and chemical analysis as well as solid‐state NMR and IR spectroscopy. Postsynthetic modification decreased the BET equivalent surface area from 3363 to 1555 m2 g?1 for Al‐MIL‐101‐URPh and reduced the mean diameters of the mesopores by 0.6 nm without degrading the structure significantly and reducing thermal stability. In spite of similar water uptake capacities, the relative humidity‐dependent uptake of Al‐MIL‐101‐URPh is slowed and occurs at higher relative humidity values. In combination with 1H‐27Al D ‐HMQC NMR spectroscopy experiments this favours a shielding mechanism of the Al clusters by the pendant phenyl groups and rules out pore blocking.  相似文献   
872.
Tissue engineered grafts show great potential as regenerative implants for diseased or injured tissues within the human body. However, these grafts suffer from poor nutrient perfusion and waste transport, thus decreasing their viability post-transplantation. Graft vascularization is therefore a major area of focus within tissue engineering because biologically relevant conduits for nutrient and oxygen perfusion can improve viability post-implantation. Many researchers used microphysiological systems as testing platforms for potential grafts owing to an ability to integrate vascular networks as well as biological characteristics such as fluid perfusion, 3D architecture, compartmentalization of tissue-specific materials, and biophysical and biochemical cues. Although many methods of vascularizing these systems exist, microvascular self-assembly has great potential for bench-to-clinic translation as it relies on naturally occurring physiological events. In this review, the past decade of literature is highlighted, and the most important and tunable components yielding a self-assembled vascular network on chip are critically discussed: endothelial cell source, tissue-specific supporting cells, biomaterial scaffolds, biochemical cues, and biophysical forces. This paper discusses the bioengineered systems of angiogenesis, vasculogenesis, and lymphangiogenesis and includes a brief overview of multicellular systems. It concludes with future avenues of research to guide the next generation of vascularized microfluidic models.  相似文献   
873.
Transition Metal Chemistry - (η5-Dp)Ru(PPh3)2H (Dp?=?C8H9?, 1,2-dihydropentalenyl) was synthesized in 90% yield by reaction of (η5-Dp)Ru(PPh3)2Cl with sodium formate....  相似文献   
874.
Enhancement of spontaneous emission in a resonant Bragg quantum well (QW) structure with 60 periods of triple InAs monolayers embedded in a GaAs matrix is studied experimentally and theoretically. From measurements of the time‐resolved photoluminescence, besides the QW exciton at 1.47 eV, a specific super‐radiant (SR) emission demonstrating nonlinear properties is found. The SR mode shows a near‐quadratic dependence of intensity on excitation power, while its energy position follows the Bragg condition. It is revealed that the SR mode shows a peculiar non‐monotonic dependence of intensity on direction, with a maximum observed at approximately 40°. The enhancement in the SR emission at a specific direction is correlated well with suggested theoretical consideration of the modal Purcell factor for periodic quantum well structures.  相似文献   
875.
Ganenkova  E. G.  Starkov  V. V. 《Mathematical Notes》2019,105(1-2):216-226

Differential inequalities for polynomials generalizing the well-known Smirnov, Rahman, Schmeisser, and Bernstein inequalities are obtained.

  相似文献   
876.
Developing clean and sustainable energies as alternatives to fossil fuels is in strong demand within modern society. The oxygen evolution reaction (OER) is the efficiency-limiting process in plenty of key renewable energy systems, such as electrochemical water splitting and rechargeable metal–air batteries. In this regard, ongoing efforts have been devoted to seeking high-performance electrocatalysts for enhanced energy conversion efficiency. Apart from traditional precious-metal-based catalysts, nickel-based compounds are the most promising earth-abundant OER catalysts, attracting ever-increasing interest due to high activity and stability. In this review, the recent progress on nickel-based oxide and (oxy)hydroxide composites for water oxidation catalysis in terms of materials design/synthesis and electrochemical performance is summarized. Some underlying mechanisms to profoundly understand the catalytic active sites are also highlighted. In addition, the future research trends and perspectives on the development of Ni-based OER electrocatalysts are discussed.  相似文献   
877.
A highly selective and efficient oxidative carbocyclization/borylation of enallenols catalyzed by palladium immobilized on amino-functionalized siliceous mesocellular foam (Pd-AmP-MCF) was developed for diastereoselective cyclobutenol synthesis. The heterogeneous palladium catalyst can be recovered and recycled without any observed loss of activity or selectivity. The high diastereoselectivity of the reaction is proposed to originate from a directing effect of the enallenol hydroxyl group. Optically pure cyclobutenol synthesis was achieved by the heterogeneous strategy by using chiral enallenol obtained from kinetic resolution.  相似文献   
878.
Peptide macrocyclization is often a slow process, plagued by epimerization and cyclodimerization. Herein, we describe a new method for peptide macrocyclization employing the AgI‐promoted transformation of peptide thioamides. The AgI has a dual function: chemoselectively activating the thioamide and tethering the N‐terminal thioamide to the C‐terminal carboxylate. Extrusion of Ag2S generates an isoimide intermediate, which undergoes acyl transfer to generate the native cyclic peptide, resulting in a rapid, traceless macrocylization process. Cyclic peptides are furnished in high yields within 1 hour, free of epimerization and cyclodimerization.  相似文献   
879.
Radiophysics and Quantum Electronics - We present the results of comparing the total electron content measurements based on GLONASS satellite signals and the EISCAT UHF incoherent scatter radar...  相似文献   
880.
Driven and non-equilibrium quantum states of matter have attracted growing interest in both theoretical and experimental studies in condensed matter physics. Recent progress in realizing transient collective states in driven or pumped Dirac materials (DMs) is reviewed herein. In particular, the focus is on optically pumped DMs which are a promising platform for transient excitonic instabilities. Optical pumping combined with the linear (Dirac) dispersion of the electronic spectrum offers a knob for tuning the effective interaction between the photoexcited electrons and holes, and thus provides a way of reducing the critical coupling for excitonic instability. As a result, a transient excitonic condensate could be achieved in a pumped DM while it is not feasible in equilibrium. A unifying theoretical framework is provided for describing transient collective states in 2D and 3D DMs. The experimental signatures are described and numerical estimates of the size of the dynamically induced excitonic gaps and the values of the critical temperatures for several specific systems, are summarized. In addition, general guidelines for identifying promising material candidates are discussed. Finally, comments are provided regarding recent experimental efforts in realizing transient excitonic condensate in pumped DMs, and outstanding issues and possible future directions are outlined.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号