首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   48571篇
  免费   7662篇
  国内免费   5514篇
化学   25988篇
晶体学   520篇
力学   2442篇
综合类   287篇
数学   4434篇
物理学   14706篇
无线电   13370篇
  2024年   144篇
  2023年   1166篇
  2022年   1258篇
  2021年   1718篇
  2020年   1847篇
  2019年   1691篇
  2018年   1482篇
  2017年   1449篇
  2016年   2038篇
  2015年   2195篇
  2014年   2612篇
  2013年   3211篇
  2012年   3969篇
  2011年   4108篇
  2010年   2926篇
  2009年   3053篇
  2008年   3212篇
  2007年   2901篇
  2006年   2819篇
  2005年   2230篇
  2004年   1709篇
  2003年   1518篇
  2002年   1400篇
  2001年   1182篇
  2000年   1175篇
  1999年   1127篇
  1998年   1025篇
  1997年   908篇
  1996年   931篇
  1995年   814篇
  1994年   691篇
  1993年   538篇
  1992年   559篇
  1991年   422篇
  1990年   349篇
  1989年   280篇
  1988年   237篇
  1987年   188篇
  1986年   176篇
  1985年   162篇
  1984年   112篇
  1983年   74篇
  1982年   68篇
  1981年   39篇
  1980年   17篇
  1979年   10篇
  1977年   2篇
  1971年   1篇
  1959年   1篇
  1957年   3篇
排序方式: 共有10000条查询结果,搜索用时 62 毫秒
991.
Inorganic/organic composite polymer electrolytes (CPEs) with good flexibility and electrode contact have been pursued for solid−state sodium-metal batteries. However, the application of CPEs for high energy density solid−state sodium-metal batteries is still limited by the low Na+ conductivity, large thickness, and low ion transference number. Herein, an ultra-thin single-particle-layer (UTSPL) composite polymer electrolyte membrane with a thickness of ≈20 µm straddled by a sodium beta−alumina ceramic electrolyte (SBACE) is presented. A ceramic Na+-ion electrolyte that bridges or percolates across an ultra-thin and flexible polymer membrane provides: 1) the strength and flexibility from the polymer membrane, 2) excellent electrolyte/electrode interfacial contact, and 3) a percolation path for Na+-ion transfer. Owing to this novel design, the obtained UTSPL-35SBACE membrane exhibits a high Na+-ion conductivity of 0.19 mS cm−1 and a transference number of 0.91 at room temperature, contributing to long−term cycling stability of symmetric sodium cells with a small overpotential. The assembled quasi-solid-state cell with the as−prepared UTSPL-35SBACE membrane displays superior cycling performance with a discharge capacity of 105 mAh g−1 at 0.5 °C rate after 100 cycles and excellent rate performance (82 mAh g−1 at 5 °C rate) at room temperature with the potassium manganese hexacyanoferrate (KMHCF)@CNTs/CNFs cathode, where KMHCF refers to potassium manganese hexacyanoferrate.  相似文献   
992.
A highly biomimetic neotrachea with C-shaped cartilage rings has promising clinical applications in the treatment of circumferential tracheal defects (CTDs) owing to its structure and physiological function. However, to date, most fabricated tracheal cartilages are O-shaped. In this study, finite element analysis demonstrates C-shaped cartilage rings that exhibit better compliance than O-shaped. Hydrogel is developed using methacryloyl-modified decellularized Wharton's jelly matrix (DWJMA) for the regeneration of C-shaped cartilage rings. This novel hydrogel possesses adjustable physicochemical properties and favorable cytocompatibility. When loaded with chondrocytes, DWJMA hydrogels support the optimal cartilage regeneration both in vitro and in vivo. More importantly, a highly biomimetic neotrachea simultaneously simulating the structural and physiological properties of the normal trachea is regenerated via modular assembly of several individual C-shaped cartilage rings. The results demonstrate the highly biomimetic neotrachea have better patency (88.6 ± 6.1% vs 74.4 ± 9.4%, p < 0.05), improve the survival rate, alleviate weight loss and mucoid impaction, than its O-shaped counterpart when used for the treatment of CTDs in a rabbit model. Therefore, this study proposes a novel hydrogel for the regeneration of C-shaped cartilage and provides new insights into the treatment of CTDs using a highly biomimetic neotrachea with C-shaped cartilage rings.  相似文献   
993.
The anti-glare panels along highways can block the dazzling lights of opposing vehicles at night, playing an important role in the highway safety. Inspired by the highway anti-glare panels, wind energy harvesting triboelectric nanogenerator (AG-TENG) arrays to properly capture energy from highway moving vehicles is developed. A single AG-TENG installation module can achieve a high power density of 0.2 Wm−2 at a wind speed of 3 m s−1. This wind speed is too low to drive conventional wind energy harvesting equipment. The performance of the AG-TENG shows no degradation after 80 h of continuous operation (1 440 000 times). Thus, with the rational consideration and features, the system can generate enough power to drive internet of things (IoT) devices and environmental sensors, as well as offer wireless alarming and radio frequency identification vehicle monitoring. This study provides a promising strategy to properly harvest wind energy on highways using existing infrastructures under the condition of even no natural wind, showing broad application prospects in distributed environmental monitoring, intelligent highways, and the IoT.  相似文献   
994.
Construction of high efficiency and stable Li metal anodes is extremely vital to the breakthrough of Li metal batteries. In this study, for the first time, groundbreaking in situ plasma interphase engineering is reported to construct high-quality lithium halides-dominated solid electrolyte interphase layer on Li metal to stabilize & protect the anode. Typically, SF6 plasma-induced sulfured and fluorinated interphase (SFI) is composed of LiF and Li2S, interwoven with each other to form a consecutive solid electrolyte interphase. Simultaneously, brand-new vertical Co fibers (diameter: ≈5 µm) scaffold is designed via a facile magnetic-field-assisted hydrothermal method to collaborate with plasma-enhanced Li metal anodes (SFI@Li/Co). The Co fibers scaffold accommodates active Li with mechanical integrity and decreases local current density with good lithiophilicity and low geometric tortuosity, supported by DFT calculations and COMSOL Multiphysics simulation. Consequently, the assembled symmetric cells with SFI@Li/Co anodes exhibit superior stability over 525 h with a small voltage hysteresis (125 mV at 5 mA cm−2) and improved Coulombic efficiency (99.7%), much better than the counterparts. Enhanced electrochemical performance is also demonstrated in full cells with commercial cathodes and SFI@Li/Co anode. The research offers a new route to develop advanced alkali metal anodes for energy storage.  相似文献   
995.
Nex-generation high-energy-density storage battery, assembled with lithium (Li)-metal anode and nickel-rich cathode, puts forward urgent demand for advanced electrolytes that simultaneously possess high security, wide electrochemical window, and good compatibility with electrode materials. Herein an intrinsically nonflammable electrolyte is designed by using 1 M lithium difluoro(oxalato)borate (LiDFOB) in triethyl phosphate (TEP) and N-methyl-N-propyl-pyrrolidinium bis(trifluoromethylsulfonyl)imide [Pyr13][TFSI] ionic liquid (IL) solvents. The introduction of IL can bring plentiful organic cations and anions, which provides a cation shielding effect and regulates the Li+ solvation structure with plentiful Li+-DFOB and Li+-TFSI complexes. The unique Li+ solvation structure can induce stable anion-derived electrolyte/electrode interphases, which effectively inhibit Li dendrite growth and suppress side reactions between TEP and electrodes. Therefore, the LiNi0.9Co0.05Mn0.05O2 (NCM90)/Li coin cell with this electrolyte can deliver stable cycling even under 4.5 V and 60 °C. Moreover, a Li-metal battery with thick NCM90 cathode (≈ 15 mg cm−2) and thin Li-metal anode (≈ 50 µm) (N/P ≈ 3), also reveals stable cycling performance under 4.4 V. And a 2.2 Ah NCM90/Li pouch cell can simultaneously possess prominent safety with stably passing the nail penetration test, and high gravimetric energy density of 470 Wh kg−1 at 4.4 V.  相似文献   
996.
As a nontoxic and cost-effective material, copper pastes have attracted great attention in both academia and industry. However, achieving the long-term stability of copper pastes remains challenging due to their susceptibility to oxidation. Therefore, stable copper nanoparticles with a Cu(0)–Cu(I) core–shell structure containing a surface passivation layer of formate ions-involved Cu(I) coordination polymers are developed. Based on the self-reducing nature of the passivation layer, the nanoparticle-based copper pastes can be sintered in <1 min, showing high electrical conductivity (220 000 S cm−1), mechanical flexibility, and long-term stability after sintering. The excellent properties of the developed copper pastes are even comparable with the ones of silver pastes. These stable copper pastes have broad applications in printed electronics (e.g., glucose sensors, RFID tags, and electromagnetic shielding films), showing great potential in the fabrication of flexible printed electronics.  相似文献   
997.
Sophisticated sensing and actuation capabilities of many living organisms in nature have inspired scientists to develop biomimetic somatosensory soft robots. Herein, the design and fabrication of homogeneous and highly conductive hydrogels for bioinspired somatosensory soft actuators are reported. The conductive hydrogels are synthesized by in situ copolymerization of conductive surface-functionalized MXene/Poly(3,4-ethylenedioxythiophene)/poly(styrenesulfonate) ink with thermoresponsive poly(N-isopropylacrylamide) hydrogels. The resulting hydrogels are found to exhibit high conductivity (11.76 S m−1), strain sensitivity (GF of 9.93), broad working strain range (≈560% strain), and high stability after over 300 loading–unloading cycles at 100% strain. Importantly, shape-programmable somatosensory hydrogel actuators with rapid response, light-driven remote control, and self-sensing capability are developed by chemically integrating the conductive hydrogels with a structurally colored polymer. As the proof-of-concept illustration, structurally colored hydrogel actuators are applied for devising light-driven programmable shape-morphing of an artificial octopus, an artificial fish, and a soft gripper that can simultaneously monitor their own motions via real-time resistance variation. This work is expected to offer new insights into the design of advanced somatosensory materials with self-sensing and actuation capabilities, and pave an avenue for the development of soft-matter-based self-regulatory intelligence via built-in feedback control that is of paramount significance for intelligent soft robotics and automated machines.  相似文献   
998.
The interface energetics-modification plays an important role in improving the power conversion efficiency (PCE) among the perovskite solar cells (PSCs). Considering the low carrier mobility caused by defects in PSCs, a double-layer modification engineering strategy is adopted to introduce the “spiderman” NOBF4 (nitrosonium tetrafluoroborate) between tin dioxide (SnO2 and perovskite layers. NO+, as the interfacial bonding layer, can passivate the oxygen vacancy in SnO2, while BF4 can optimize the defects in the bulk of perovskite. This conclusion is confirmed by theoretical calculation and transmission electron microscopy (TEM). The synergistic effect of NO+ and BF4 distinctly heightens the carrier extraction efficiency, and the PCE of PSCs is 24.04% with a fill factor (FF) of 82.98% and long-term stability. This study underlines the effectiveness of multifunctional additives in improving interface contact and enhancing PCE of PSCs.  相似文献   
999.
Formamidinium lead triiodide (FAPbI3) has been demonstrated as the most efficient perovskite system to date, due to its excellent thermal stability and an ideal bandgap approaching the Shockley-Queisser limit. Whereas, there are intrinsic quantum confinement effects in FAPbI3, which lead to unwanted non-radiative recombination. Additionally, the black α-phase of FAPbI3 is unstable under room temperature due to the significant residual tensile stress in the film. To simultaneously address the above issues, a thermally-activated delayed fluorescence polymer P1 is designed in the study to modify the FAPbI3 film. Owing to the spectral overlap between the photoluminescence of P1 and absorption of the above-bandgap quantum wells of FAPbI3, the Förster energy transfer occurs at the P1/FAPbI3 interface, which further triggers the Dexter energy transfer within FAPbI3. The exciton “recycling” can thus be realized, which reduces the non-radiative recombination losses in perovskite solar cells (PSCs). Moreover, P1 is found to introduce compressive stress into FAPbI3, which relieves the tensile stress in perovskite. Consequently, the PSCs with P1 treatment achieve an outstanding power conversion efficiency (PCE) of 23.51%. Moreover, with the alleviation of stress in the perovskite film, flexible PSCs (f-PSCs) also deliver a high PCE of 21.40%.  相似文献   
1000.
Blue conjugated polymers-based OLEDs with both high efficiency and low efficiency roll-off are under big challenge. Herein, a strategy of local conjugation is proposed to construct high-efficiency blue-emitting conjugated polymers, in which the conjugation degree of polymeric backbones is adjusted by inserting different spacers. In this way, the energy level of triplet state and the energy transfer direction of the polymeric main-chains can be effectively regulated. Benefiting from such fine regulation, the prepared alternative copolymers Alt-PB36 with local conjugated main-chains can better suppress the accumulation of long-lived triplet excitons comparing with the complete conjugated polymers. The higher PLQY of Alt-PB36 also verifies the effective energy transfer from the polymeric main-chains to the TADF units. Accordingly, Alt-PB36 based solution-processed OLEDs achieve an EQEmax of 11.6% and a very low efficiency roll-off of 2.8% at 100 cd m−2 and 15.2% at 500 cd m−2. This result represents the best efficiency among blue light-emitting conjugated polymer-based OLEDs so far under high luminance.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号