首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   132154篇
  免费   25429篇
  国内免费   12314篇
化学   86875篇
晶体学   1208篇
力学   4695篇
综合类   661篇
数学   10429篇
物理学   28951篇
无线电   37078篇
  2024年   227篇
  2023年   2249篇
  2022年   2846篇
  2021年   3935篇
  2020年   5299篇
  2019年   6168篇
  2018年   4214篇
  2017年   4022篇
  2016年   7593篇
  2015年   8193篇
  2014年   9073篇
  2013年   10925篇
  2012年   11269篇
  2011年   10553篇
  2010年   9105篇
  2009年   9122篇
  2008年   8894篇
  2007年   7582篇
  2006年   6852篇
  2005年   6304篇
  2004年   4958篇
  2003年   4186篇
  2002年   4733篇
  2001年   3629篇
  2000年   3200篇
  1999年   2476篇
  1998年   1681篇
  1997年   1607篇
  1996年   1502篇
  1995年   1288篇
  1994年   1114篇
  1993年   930篇
  1992年   761篇
  1991年   693篇
  1990年   545篇
  1989年   403篇
  1988年   330篇
  1987年   253篇
  1986年   241篇
  1985年   200篇
  1984年   142篇
  1983年   132篇
  1982年   97篇
  1981年   62篇
  1980年   48篇
  1979年   28篇
  1977年   23篇
  1976年   27篇
  1975年   31篇
  1957年   21篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
61.
研究和分析了面向航空通信应用的边沿触发器教学设计。以边沿触发电路实现原理为核心,引导边沿触发机制的探究式学习;以航空机载网络通信为具体应用背景,引入科学研究和工程实现中实际问题,设计曼切斯特码检测系统实验;使得边沿触发器教学成为“知识再创造”的过程和创新实践的新载体,以期培养新工科背景下的独立、创新和实践精神。  相似文献   
62.
Orthorhombic molybdenum trioxide (MoO3) is one of the most promising anode materials for sodium‐ion batteries because of its rich chemistry associated with multiple valence states and intriguing layered structure. However, MoO3 still suffers from the low rate capability and poor cycle induced by pulverization during de/sodiation. An ingenious two‐step synthesis strategy to fine tune the layer structure of MoO3 targeting stable and fast sodium ionic diffusion channels is reported here. By integrating partially reduction and organic molecule intercalation methodologies, the interlayer spacing of MoO3 is remarkably enlarged to 10.40 Å and the layer structural integration are reinforced by dimercapto groups of bismuththiol molecules. Comprehensive characterizations and density functional theory calculations prove that the intercalated bismuththiol (DMcT) molecules substantially enhanced electronic conductivity and effectively shield the electrostatic interaction between Na+ and the MoO3 host by conjugated double bond, resulting in improved Na+ insertion/extraction kinetics. Benefiting from these features, the newly devised layered MoO3 electrode achieves excellent long‐term cycling stability and outstanding rate performance. These achievements are of vital significance for the preparation of sodium‐ion battery anode materials with high‐rate capability and long cycling life using intercalation chemistry.  相似文献   
63.
Unreliable mobility values, and particularly greatly overestimated values and severely distorted temperature dependences, have recently hampered the development of the organic transistor field. Given that organic field‐effect transistors (OFETs) have been routinely used to evaluate mobility, precise parameter extraction using the electrical properties of OFETs is thus of primary importance. This review examines the origins of the various mobilities that must be determined for OFET applications, the relevant extraction methods, and the data selection limitations, which help in avoiding conceptual errors during mobility extraction. For increased precision, the review also discusses device fabrication considerations, calibration of both the specific gate‐dielectric capacitance and the threshold voltage, the contact effects, and the bias and temperature dependences, which must actually be handled with great care but have mostly been overlooked to date. This review serves as a systematic overview of the OFET mobility extraction process to ensure high precision and will also aid in improving future research.  相似文献   
64.
We investigate terahertz radiation(T-rays) from a pentacene organic diode at room temperature. The quantum chemistry calculation for frequency-related Huang–Rhys factor of pentacene is also carried out. The results demonstrate that the T-rays can come from a bending vibration of pentacene skeleton after the energy of pentacene exciton transferring to the vibrational excited state via electron–phonon coupling. Frequency and natural bond orbital analytics of pentacene and its derivatives are performed in order to explain the result and develop new materials to get higher emission. This work provides a new way to produce T-rays with a simple device at room temperature.  相似文献   
65.
A nanomaterials-based novel molecular beacon has attracted growing attentions in fluorescent assays as many nanomaterials possess excellent quenching efficiency. In this work, a gold-based nanobeacon probe was established to detect organophosphorus pesticides for the first time. The constructed gold-based nanobeacon acted as a signal indicator and could display the decreasing of the intensity in the presence of targets, which competitively bound to single strand DNA. To achieve a high sensitive probe, some parameters including solution pH, temperature and reaction time were investigated and optimized. The gold-based nanobeacon probe assay was proved to be rapid and sensitive to achieve a detection limit of 0.035 μM for isocarbophos, 0.134 μM for profenofos, 0.384 μM for phorate and 2.35 μM for omethoate, respectively. The prepared nanobeacon effectively reduced the background and improved the detection sensitivity and selectivity. The probe is stable, easy to operate and does not need sophisticated instruments. These features makes the probe feasible for screening trace organophosphorus pesticides in real samples.  相似文献   
66.
67.
68.
In the current work, two eco‐friendly analytical methods based on capillary electrophoresis (CE) and reversed phase liquid chromatography (RPLC) were developed for simultaneous determination of the most commonly used anticancer drugs for Hodgkin's disease: methotrexate (MTX), vinblastine, chlorambucil and dacarbazine. A background electrolyte (BGE) of 12.5 mmol/L phosphate buffer at pH 7.4 and 0.1 µmol/L 1‐butyl‐3‐methyl imidazolium bromide (BMImBr) ionic liquid (IL) was used for CE measurements at 250 nm detection wavelength, 20 kV applied voltage and 25 °C. The rinsing protocol was significantly improved to reduce the adsorption of IL on the interior surface of capillary. Moreover, RPLC method was developed on α‐1‐acid glycoprotein (AGP) column. Mobile phase was 10 mmol/L phosphate buffer at pH 6.0 (100% v/v) and flow rate at 0.1 mL/min. As AGP is a chiral column, it was successfully separated l ‐MTX from its enantiomer impurity d ‐MTX. Good linearity of quantitative analysis was achieved with coefficients of determinations (r2) >0.995. The stability of drugs measurements was investigated with adequate recoveries up to 24 h storage time under ambient temperature. The limits of detection were <50 and 90 ng/mL by CE and RPLC, respectively. The using of short‐chain IL as an additive in BGE achieved 600‐fold sensitivity enhancement compared with conventional Capillary Zone Electrophoresis (CZE). Therefore, for the first time, the proposed methods were successfully applied to determine simultaneously the analytes in human plasma and urine samples at clinically relevant concentrations with fast and simple pretreatments. Developed IL‐assisted CE and RPLC methods were also applied to measure MTX levels in patients’ samples over time. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
69.
In the view of substrate availability, atomic efficiency and cost, directly using arenols as coupling partners in cross‐coupling, would be one of the most attractive goals. Up to date, many efforts have been made to activate the C—O bond of phenols with different strategies, for example, through in‐situ formed intermediates, through a catalytic reductive dearomatization‐condensation‐rearomatization sequence or catalytic deoxygenation. In this review, we summarized recent advances in cross‐couplings of arenols as the electrophiles via C—O activation.  相似文献   
70.
Three‐dimensional (3D) nanometal films serving as current collectors have attracted much interest recently owing to their promising application in high‐performance supercapacitors. In the process of the electrochemical reaction, the 3D structure can provide a short diffusion path for fast ion transport, and the highly conductive nanometal may serve as a backbone for facile electron transfer. In this work, a novel polypyrrole (PPy) shell@3D‐Ni‐core composite is developed to enhance the electrochemical performance of conventional PPy. With the introduction of a Ni metal core, the as‐prepared material exhibits a high specific capacitance (726 F g?1 at a charge/discharge rate of 1 A g?1), good rate capability (a decay of 33 % in Csp with charge/discharge rates increasing from 1 to 20 A g?1), and high cycle stability (only a small decrease of 4.2 % in Csp after 1000 cycles at a scan rate of 100 mV s?1). Furthermore, an aqueous symmetric supercapacitor device is fabricated by using the as‐prepared composite as electrodes; the device demonstrates a high energy density (≈21.2 Wh kg?1) and superior long‐term cycle ability (only 4.4 % and 18.6 % loss in Csp after 2000 and 5000 cycles, respectively).  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号