首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2292篇
  免费   145篇
  国内免费   13篇
化学   1597篇
晶体学   10篇
力学   65篇
数学   321篇
物理学   291篇
无线电   166篇
  2024年   6篇
  2023年   15篇
  2022年   27篇
  2021年   45篇
  2020年   36篇
  2019年   52篇
  2018年   39篇
  2017年   48篇
  2016年   101篇
  2015年   57篇
  2014年   122篇
  2013年   143篇
  2012年   177篇
  2011年   194篇
  2010年   121篇
  2009年   121篇
  2008年   155篇
  2007年   149篇
  2006年   127篇
  2005年   117篇
  2004年   116篇
  2003年   88篇
  2002年   74篇
  2001年   38篇
  2000年   35篇
  1999年   25篇
  1998年   26篇
  1997年   22篇
  1996年   18篇
  1995年   16篇
  1994年   16篇
  1993年   8篇
  1992年   8篇
  1991年   14篇
  1990年   4篇
  1989年   3篇
  1988年   5篇
  1987年   8篇
  1986年   4篇
  1985年   19篇
  1984年   6篇
  1983年   3篇
  1982年   5篇
  1981年   8篇
  1980年   4篇
  1979年   6篇
  1977年   4篇
  1976年   3篇
  1967年   2篇
  1958年   2篇
排序方式: 共有2450条查询结果,搜索用时 187 毫秒
991.
The chiral recognition mechanism for a series of d,l-dansyl-amino-acids (test solutes) on a teicoplanin stationary phase was investigated in reversed phase liquid chromatography (RPLC). The effect of both a surface tension modifier (sucrose) and a chaotropic agent (perchlorate anion) on the enantiomeric separation was studied by varying their concentration, c, in the mobile phase. The thermodynamic data supported the fact that the sucrose molecule acted only on the hydrophobic part of the interaction teicoplanin/dansyl-amino-acid and not on the specific chiral part. It was demonstrated that the enhancement of the separation factor observed as the perchlorate salt concentration increased in the mobile phase was enthalpically controlled owing to stereoselective bonding interactions. Such behavior was used to optimize the chromatographic conditions for separation of dansyl-amino-acids on teicoplanin.  相似文献   
992.
The stereospecific synthesis of the PPAR alpha/gamma agonist 1 was accomplished via ethylation of the optically pure trihydroxy derivative 6, itself derived via an enzymatic resolution. The ethylation can be accomplished without epimerization only under strict control of the reaction conditions and the choice of base (sodium tert-amylate), temperature (-30 degrees C), order of addition, and solvent (DMF). The key diastereospecific SN2 reaction of the phenol 4 with S-2-chloropropionic acid is best achieved via the sodium phenoxide of 4 derived from Na0 as the reagent of choice. The structure elucidation and key purification protocols to achieve pharmaceutical purity will also be described.  相似文献   
993.
994.
995.
The conformational preference of a [2]rotaxane system has been examined by molecular dynamics simulations. The rotaxane wheel consists of two bridged binding components: a cis-dibenzo-18-crown-6 ether and a 1,3-phenyldicarboxamide, and the penetrating axle consists of a central isophthaloyl unit with phenyltrityl capping groups. The influence of solvation on the co-conformation of the [2]rotaxane was evaluated by comparing the conformational flexibility in two solvents: chloroform and dimethyl sulfoxide. Attention was also paid to the effect of cation binding on the dynamical properties of the [2]rotaxane. The conformational stability of the [2]rotaxane was calculated using a MM/PB-SA strategy, and the occurrence of specific motions was examined by essential dynamics analysis. The changes in the co-conformational properties in the two solvents and upon cation binding are discussed in light of the available NMR data. The results indicate that in chloroform solution the [2]rotaxane system exists as a mixture of co-conformational states including some that have hydrogen bonds between axle C=O and wheel NH groups. Analysis of the simulations allow us to hypothesize that the [2]rotaxane's circumrotation motion can occur as the result of a dynamic process that combines a preliminary axle sliding step that breaks these hydrogen bonds and a conformational change in the ester group more distant from the wheel. In contrast, no hydrogen-bonded co-conformation was found in dimethyl sulfoxide, which appears to be due to the preferential formation of hydrogen bonds between the wheel NH groups with solvent molecules. Moreover, the axle experiences notable changes in anisotropic shielding, which would explain why the NMR signals are broadened in this solvent. Insertion of a sodium cation into the crown ether reduces co-conformational flexibility due to an interaction of the axle with the cation. Overall, the results reveal how both solvent and ionic atmosphere can influence the co-conformational preferences of rotaxanes.  相似文献   
996.
997.
998.
Metabolism data provided with reduced cycle time has become of increasing importance for the early evaluation of DMPK properties of drugs in discovery. In this regard, quadrupole time-of-flight hybrid mass spectrometers (Q-TOF) can provide very reliable metabolite identification via accurate mass measurement of ions and the consequent access to the elemental composition of the metabolite. However, due to their cost, they are often used for drug metabolism studies on later stage drug candidates or to address challenging metabolism questions. A new prototype, consisting of a five-channel multiplexed electrospray ionization (ESI) source on a Q-TOF with one channel used for lock-mass compound infusion, was evaluated for metabolite identification. The goal was to increase the sample throughput of a single ESI-MS system by a factor of 4, while maintaining efficient metabolite separation in high-performance liquid chromatography (HPLC) as well as adequate sensitivity and mass accuracy, and ultimately improve the speed and quality of metabolism studies supporting drug discovery. The analytical performance of the system was assessed by evaluating the sensitivity and mass accuracy (using real in vitro and in vivo samples), inter-channel differences in retention times, MS/UV response, and cross-talk among channels. The sensitivity using the multiplexed ESI source was on average 2-fold lower than with single ESI, correlating well with previous literature data. The mass accuracy was comparable to that obtained using single ESI in both MS and MS/MS modes, making the metabolite identification process using the multiplexed ESI source as reliable as with single ESI. Compound-dependent differences in ionization efficiencies were observed among channels, and were minimized by analyzing related samples on the same channel. Finally, the level of cross-talk among channels was acceptable (around 0.3%) and comparable to levels previously published for quantitative applications using multiplexed ESI. The paper also focuses on the advantages and disadvantages of this new approach compared to other approaches in the literature in the field of metabolite identification.  相似文献   
999.
We study the growth and internal structure of polyelectrolyte multilayers obtained by combining three polyanions with nine polycations of the ionene family, of systematically varied chemical architecture. We find that, contrary to a generally held belief, ordered organic multilayers are by no way exceptional, provided one of the polyelectrolytes bears groups which induce structure in water, such as long hydrophobic segments or mesogenic groups. However, this condition is not sufficient, as order will or will not emerge in the multilayer depending on the specific pairing of the polyelectrolytes. The results support the notion that layering in the multilayer results from some degree of prestructuring of a water-swollen layer adsorbed during each step of deposition. These findings pave the way to new possible uses of polyelectrolyte multilayers, for example, for applications requiring preferential alignment or strong confinement of specific functional groups.  相似文献   
1000.
Collisional activation of keV thiophene-2-one radical cations 1(+*) with O(2) or NO(*) as the target gas leads to a desulfuration reaction. This peculiar reaction is insignificant or absent with other targets such as helium, argon, methane or nitrogen. The radical cations produced in this desulfuration reaction are most probably vinylketene ions, as indicated by a triple mass spectrometric (MS/MS/MS) experiment performed on a 'hybrid' tandem mass spectrometer of sector--quadrupole--sector configuration. Tentatively, it is proposed that population of an excited state accounts for the non-ergodic behavior of 1(+*) upon collision with oxygen or nitric oxide. Ab initio molecular orbital calculations using molecular orbital theory (UMP2, UCCSD(T)) and density functional theory (B3LYP) with 6--31G(d,p) and 6--311++G(d,p) basis sets were used to evaluate the relative energy of the excited quartet state of 1(+*) radical cations. This quartet state is calculated to lie about 3.6 eV above the (2)A(") ground state and 0.9 eV above the C(4)H(4)O(+*)+S dissociation products. It is proposed that the quartet ion serves as the precursor for the spontaneous desulfuration.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号