首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   40374篇
  免费   6256篇
  国内免费   6281篇
化学   20181篇
晶体学   445篇
力学   1760篇
综合类   450篇
数学   3704篇
物理学   10564篇
无线电   15807篇
  2024年   140篇
  2023年   752篇
  2022年   1178篇
  2021年   1484篇
  2020年   1428篇
  2019年   1416篇
  2018年   1210篇
  2017年   1427篇
  2016年   1779篇
  2015年   2058篇
  2014年   2424篇
  2013年   3060篇
  2012年   3179篇
  2011年   3320篇
  2010年   2746篇
  2009年   2900篇
  2008年   3022篇
  2007年   2744篇
  2006年   2658篇
  2005年   2371篇
  2004年   1827篇
  2003年   1570篇
  2002年   1693篇
  2001年   1369篇
  2000年   1152篇
  1999年   798篇
  1998年   508篇
  1997年   391篇
  1996年   395篇
  1995年   281篇
  1994年   284篇
  1993年   221篇
  1992年   186篇
  1991年   174篇
  1990年   145篇
  1989年   120篇
  1988年   111篇
  1987年   68篇
  1986年   64篇
  1985年   67篇
  1984年   37篇
  1983年   44篇
  1982年   14篇
  1981年   20篇
  1980年   21篇
  1979年   16篇
  1978年   14篇
  1976年   4篇
  1957年   4篇
  1936年   4篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
111.
LiNi0.8Co0.1Mn0.1O2 cathode material is prepared by sol-gel method and the effects of Nb5+ doping and different calcination temperatures on cathode materials were deeply investigated. Structural and morphological characterizations revealed that the optimal content of 1 mol% Nb5+ can stabilize layered structures, mitigate Ni2+ migration to Li layers, improve lithium diffusion capacity, and reduce lattice expansion/shrinkage while cycling. And calcination temperature at 800 °C can not only ensure good morphology, but also suppress the mixed discharge of lithium and nickel in the internal structure. Electrochemical performance evaluation revealed that Nb5+ doping improves the discharge-specific capacity of the material, which is conducive to ameliorating its rate capability and cycle performance. And the material at 800 °C exhibits the highest discharge specific capacity, the best magnification performance, low polarizability, and the best cycle reversibility.  相似文献   
112.
Metal–organic frameworks (MOFs) are highly versatile materials that have been identified as promising candidates for membrane-based gas separation applications due to their uniformly narrow pore windows and virtually unlimited structural and chemical features. Defect engineering of MOFs has opened new opportunities for manipulating MOF structures, providing a simple yet efficient approach for enhancing membrane separation. However, the utilization of this strategy to tailor membrane microstructures and enhance separation performance is still in its infancy. Thus, this summary aims to provide a guideline for tailoring defective MOF-based membranes. Recent developments in defect engineering of MOF-based membranes will be discussed, including the synthesis strategies for defective MOFs, the effects of defects on the gas adsorption properties, gas transport mechanisms, and recently reported defective MOF-based membranes. Furthermore, the emerging challenges and future prospects will be outlined. Overall, defect engineering offers an exciting opportunity to improve the performance of MOF-based gas membranes. However, there is still a long way to go to fully understand the influence of defects on MOF properties and optimize the design of MOF-based membranes for specific gas separation applications. Nonetheless, continued research in this field holds great promise for the development of next-generation membrane-based gas separation technologies.  相似文献   
113.
The desirable implantable neural interfaces can accurately record bioelectrical signals from neurons and regulate neural activities with high spatial/time resolution, facilitating the understanding of neuronal functions and dynamics. However, the electrochemical performance (impedance, charge storage/injection capacity) is limited with the miniaturization and integration of neural electrodes. The “crosstalk” caused by the uneven distribution of elctric field leads to lower electrical stimulation/recording efficiency. The mismatch between stiff electrodes and soft tissues exacerbates the inflammatory responses, thus weakening the transmission of signals. Though remarkable breakthroughs have been made through the incorporation of optimizing electrode design and functionalized nanomaterials, the chronic stability, and long-term activity in vivo of the neural electrodes still need further development. In this review, the neural interface challenges mainly on electrochemistry and biology are discussed, followed by summarizing typical electrode optimization technologies and exploring recent advances in the application of nanomaterials, based on traditional metallic materials, emerging 2D materials, conducting polymer hydrogels, etc., for enhancing neural interfaces. The strategies for improving the durability including enhanced adhesion and minimized inflammatory response, are also summarized. The promising directions are finally presented to provide enlightenment for high-performance neural interfaces in future, which will promote profound progress in neuroscience research.  相似文献   
114.
With the expansion of smart grid and Internet of things (IoT) technology, edge computing has a wide variety of applications in these domains. The criteria for real-time monitoring and accuracy are particularly high in the field of online real-time monitoring of electricity lines. Based on edge technology, high-quality real-time monitoring can be performed for transmission lines using image processing techniques. Therefore, we propose an image denoising method, which can learn clean images using a stream-based generative model. The stream model uses a two-stage approach in the network to handle the different training periods of denoising separately. Experimental results show that the proposed method has good denoising performance.  相似文献   
115.
As one of the high-energy cathode materials of lithium-ion batteries (LIBs), lithium-rich-layered oxide with “single-crystal” characteristic (SC-LLO) can effectively restrain side reactions and cracks due to the reduced inner boundaries and enhanced mechanical stabilities. However, there are still high challenges for SC-LLO with diverse performance requirements, especially on their cycle stability improvement. Herein, a novel concentration gradient “single-crystal” LLO (GSC-LLO), with gradually decreasing Mn and increasing Ni contents from center to surface, is designed and prepared by combining co-precipitation and molten-salt sintering methods, yielding a capacity retention of 97.6% and an energy density retention of 95.8% within 100 cycles at 0.1 C. The enhanced performance is mostly attributed to the gradient-induced stabilized structure, free of cracks and less spinel-like structure formation after long-term cycling. Furthermore, the gradient design is also beneficial to the safety of LLOs as suggested by the improved thermal stability and reduced gas release. This study provides an effective strategy to prepare high-energy, high-stability, and high-safety LLOs for advanced LIBs.  相似文献   
116.
Following logic in the silicon semiconductor industry, the existence of native oxide and suitable fabrication technology is essential for 2D semiconductors in planar integronics, which are surface-sensitive to typical coating technologies. To date, very few types of integronics are found to possess this feature. Herein, the 2D Bi2O2Te developed recently is reported to possess large-area synthesis and controllable thermal oxidation behavior toward single-crystal native oxides. This shows that surface-adsorbed oxygen atoms are inclined to penetrate across [Bi2O2]n2n+ layers and bond with the underlying [Te]n2n− at elevated temperatures, transforming directly into [TeO4]n2n− with the basic architecture remaining stable. The oxide can be adjusted to form in an accurate layer-by-layer manner with a low-stress sharp interface. The native oxide Bi2TeO6 layer (bandgap of ≈2.9 eV) exhibits visible-light transparency and is compatible with wet-chemical selective etching technology. These advances demonstrate the potential of Bi2O2Te in planar-integrated functional nanoelectronics such as tunnel junction devices, field-effect transistors, and memristors.  相似文献   
117.
Polymer blends based solid polymer electrolytes (SPEs), combining the advantages of multiple polymers, are promising for the utilization of 5 V-class cathodes (e.g., LiCoMnO4 (LCMO)) with enhanced safety. However, severe macro-phase separation with defects and voids in polymer blends restrict the electrochemical stability and ionic migration of SPEs. Herein, inorganic compatibilizer polyacrylonitrile grafted MXene (MXene-g-PAN) is exploited to improve the miscibility of the poly(vinylidene fluoride-co-hexafluoropropylene) (PVHF)/PAN blends and suppress the consolidation of phase particles. The resulting SPE exhibits a high anodic stability with an ionic conductivity of 2.17 × 10−4 S cm−1, enabling a stable and reversible Li platting/stripping (over 2500 h). The fabricated solid Li‖LCMO cell delivers a 5.1 V discharge voltage with a decent capacity (131 mAh g−1) and cycling performance. Subsequently, the solid all-in-one graphite‖LCMO battery is also constructed to extend the application of MXene based SPEs in flexible batteries. Benefiting from the interface-less design, outstanding mechanical flexibility and stability is achieved in the battery, which can endure various deformations with a low-capacity loss (< ≈10%). This study signifies a significant development on solid flexible lithium ion batteries with enhanced performance, stability, and reliability by investigating the miscibility of polymer blends, benefiting for the design of high-performance SPEs.  相似文献   
118.
Due to the low cost and excellent potential for mass production, printable mesoscopic perovskite solar cells (p-MPSCs) have drawn a lot of attention among other device structures. However, the low open-circuit voltage (VOC) of such devices restricts their power conversion efficiency (PCE). This limitation is brought by the high defect density at perovskite grain boundaries in the mesoporous scaffold, which results in severe nonradiative recombination and is detrimental to the VOC. To improve the perovskite crystallization process, passivate the perovskite defects, and enhance the PCE, additive engineering is an effective way. Herein, a polymeric Lewis base polysuccinimide (PSI) is added to the perovskite precursor solution as an additive. It improves the perovskite crystallinity and its carbonyl groups strongly coordinate with Pb2+, which can effectively passivate defects. Additionally, compared with its monomer, succinimide (SI), PSI serves as a better defect passivator because the long-chained macromolecule can be firmly anchored on those defect sites and form a stronger interaction with perovskite grains. As a result, the champion device has a PCE of 18.84%, and the VOC rises from 973 to 1030 mV. This study offers a new strategy for fabricating efficient p-MPSCs.  相似文献   
119.
Bio-ink has gradually transited from ionic-crosslinking to photocrosslinking due to photocurable bio-hydrogel having good formability and biocompatibility. It is very important to understand and quantify the crosslinking process of photocurable hydrogels, otherwise, bioprinting cannot be standardized and scalable. However, there are few studies on hydrogel formation process and its photocrosslinking behavior which cannot be accurately predicted. Herein, the photoinitiated radical polymerized bio-hydrogels are taken as an example to establish the formation theory. Three typical crosslinking reactions are first distinguished. It is further proposed that not all double-bonds consumed during crosslinking contributeequally to polymerization. Then the concept of effective double-bond conversion (EDBC) is elicited. Deriving from EDBC, several important formation indices are defined. According to theory, it is predicted that slow crosslinking can improve the crosslinking degree. Furthermore, based on the slow crosslinking effect, a new strategy of projection-based 3D printing (PBP) is proposed, which significantly improved printing quality and efficiency. Overall, this work will fill the gap in hydrogel's formation theory, making it possible to accurately quantify the formation process.  相似文献   
120.
Semitransparent organic solar cells (ST-OSCs) have attracted increasing attention due to their promising prospect in building-integrated photovoltaics. Generally, efficient ST-OSCs with good average visible transmittance (AVT) can be realized by developing active layer materials with light absorption far from the visible light range. Herein, the development of ultrawide bandgap polymer donors with near-ultraviolet absorption, paired with near-infrared acceptors, is proposed to achieve high-performance ST-OSCs. The key points for the design of ultrawide bandgap polymers include constructing donor–donor type conjugated skeleton, suppressing the quinoidal resonance effect, and minimizing the twist of conjugated skeleton via noncovalent conformational locks. As a proof of concept, a polymer named PBOF with an optical bandgap of 2.20 eV is synthesized, which exhibited largely reduced overlap with the human eye photopic response spectrum and afforded a power conversion efficiency (PCE) of 16.40% in opaque device. As a result, ST-OSCs with a PCE over 10% and an AVT over 30% are achieved without optical modulation. Moreover, colorful ST-OSCs with visual aesthetics can be achieved by tuning the donor/acceptor weight ratio in active layer benefiting from the ultrawide bandgap nature of PBOF. This study demonstrates the great potential of ultrawide bandgap polymers for efficient colorful ST-OSCs.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号