首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   142606篇
  免费   13074篇
  国内免费   13167篇
化学   68760篇
晶体学   2304篇
力学   6808篇
综合类   1188篇
数学   14779篇
物理学   42311篇
无线电   32697篇
  2023年   1562篇
  2022年   2823篇
  2021年   3596篇
  2020年   3656篇
  2019年   3755篇
  2018年   4104篇
  2017年   4421篇
  2016年   4877篇
  2015年   4369篇
  2014年   5926篇
  2013年   7879篇
  2012年   8351篇
  2011年   8709篇
  2010年   7518篇
  2009年   7839篇
  2008年   8379篇
  2007年   7865篇
  2006年   7302篇
  2005年   6364篇
  2004年   5290篇
  2003年   4579篇
  2002年   4480篇
  2001年   4191篇
  2000年   3600篇
  1999年   2618篇
  1998年   2138篇
  1997年   1828篇
  1996年   1763篇
  1995年   1469篇
  1994年   1491篇
  1993年   1435篇
  1992年   1340篇
  1991年   1335篇
  1990年   1313篇
  1989年   1219篇
  1988年   1054篇
  1987年   1037篇
  1986年   967篇
  1985年   975篇
  1984年   999篇
  1983年   902篇
  1982年   867篇
  1981年   756篇
  1979年   835篇
  1978年   828篇
  1977年   819篇
  1976年   927篇
  1975年   816篇
  1974年   848篇
  1973年   851篇
排序方式: 共有10000条查询结果,搜索用时 633 毫秒
21.
Utilizing inner-crystal piezoelectric polarization charges to control carrier transport across a metal-semiconductor or semiconductor–semiconductor interface, piezotronic effect has great potential applications in smart micro/nano-electromechanical system (MEMS/NEMS), human-machine interfacing, and nanorobotics. However, current research on piezotronics has mainly focused on systems with only one or rather limited interfaces. Here, the statistical piezotronic effect is reported in ZnO bulk composited of nanoplatelets, of which the strain/stress-induced piezo-potential at the crystals’ interfaces can effectively gate the electrical transport of ZnO bulk. It is a statistical phenomenon of piezotronic modification of large numbers of interfaces, and the crystal orientation of inner ZnO nanoplatelets strongly influence the transport property of ZnO bulk. With optimum preferred orientation of ZnO nanoplatelets, the bulk exhibits an increased conductivity with decreasing stress at a high pressure range of 200–400 MPa, which has not been observed previously in bulk. A maximum sensitivity of 1.149 µS m−1 MPa−1 and a corresponding gauge factor of 467–589 have been achieved. As a statistical phenomenon of many piezotronic interfaces modulation, the proposed statistical piezotronic effect extends the connotation of piezotronics and promotes its practical applications in intelligent sensing.  相似文献   
22.
Russian Physics Journal - A unified equation for the pressure drop in the apparatus with the stationary and fluidized granular layers is derived. The resulting recurrent equation is used to...  相似文献   
23.
Physics of the Solid State - The interference of excited and received by current antennae magnetoelastic waves counterpropagating in an yttrium iron garnet film is experimentally studied. It is...  相似文献   
24.
Siberian Mathematical Journal - We give a simple proof of one assertion used in solving Waring’s problem.  相似文献   
25.
随着计算机技术以及并行求解技术的发展,区域分解方法越来越多地应用于计算电磁学的各个领域.针对微波管中的永磁聚焦系统仿真,该文提出一种基于有限元的非重叠区域分解方法,其引入一种新型传输条件,并采用内罚的方式推导出有限元弱形式.该区域分解法的最大优势是不需要引入多余的未知量,并且最终集成的有限元矩阵满足对称正定性,适合采用预处理共轭梯度法进行矩阵方程的求解.该文仿真了多个微波管永磁聚焦系统,并与商业软件Maxwell进行了详细的对比,结果表明所提出的区域分解方法和Maxwell精度相当,却拥有着更加优越的计算性能.  相似文献   
26.
The degradation behavior of implants is significantly important for bone repair. However, it is still unprocurable to spatiotemporally regulate the degradation of the implants to match bone ingrowth. In this paper, a magneto-controlled biodegradation model is established to explore the degradation behavior of magnetic scaffolds in a magnetothermal microenvironment generated by an alternating magnetic field (AMF). The results demonstrate that the scaffolds can be heated by magnetic nanoparticles (NPs) under AMF, which dramatically accelerated scaffold degradation. Especially, magnetic NPs modified by oleic acid with a better interface compatibility exhibit a greater heating efficiency to further facilitate the degradation. Furthermore, the molecular dynamics simulations reveal that the enhanced motion correlation between magnetic NPs and polymer matrix can accelerate the energy transfer. As a proof-of-concept, the feasibility of magneto-controlled degradation for implants is demonstrated, and an optimizing strategy for better heating efficiency of nanomaterials is provided, which may have great instructive significance for clinical medicine.  相似文献   
27.
28.
Journal of Fourier Analysis and Applications - We develop a theory of Sobolev orthogonal polynomials on the Sierpiński gasket ( $$SG$$ ), which is a fractal set that can be viewed as a limit...  相似文献   
29.
30.
The realization of liquid metal-based wearable systems will be a milestone toward high-performance, integrated electronic skin. However, despite the revolutionary progress achieved in many other components of electronic skin, liquid metal-based flexible sensors still suffer from poor sensitivity due to the insufficient resistance change of liquid metal to deformation. Herein, a nacre-inspired architecture composed of a biphasic pattern (liquid metal with Cr/Cu underlayer) as “bricks” and strain-sensitive Ag film as “mortar” is developed, which breaks the long-standing sensitivity bottleneck of liquid metal-based electronic skin. With 2 orders of magnitude of sensitivity amplification while maintaining wide (>85%) working range, for the first time, liquid metal-based strain sensors rival the state-of-art counterparts. This liquid metal composite features spatially regulated cracking behavior. On the one hand, hard Cr cells locally modulate the strain distribution, which avoids premature cut-through cracks and prolongs the defect propagation in the adjacent Ag film. On the other hand, the separated liquid metal cells prevent unfavorable continuous liquid-metal paths and create crack-free regions during strain. Demonstrated in diverse scenarios, the proposed design concept may spark more applications of ultrasensitive liquid metal-based electronic skins, and reveals a pathway for sensor development via crack engineering.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号