首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   48832篇
  免费   6542篇
  国内免费   4746篇
化学   25685篇
晶体学   362篇
力学   2234篇
综合类   249篇
数学   4330篇
物理学   13173篇
无线电   14087篇
  2024年   106篇
  2023年   1152篇
  2022年   1179篇
  2021年   1763篇
  2020年   1793篇
  2019年   1585篇
  2018年   1364篇
  2017年   1307篇
  2016年   1865篇
  2015年   1988篇
  2014年   2438篇
  2013年   3130篇
  2012年   3912篇
  2011年   3897篇
  2010年   2816篇
  2009年   2787篇
  2008年   2999篇
  2007年   2682篇
  2006年   2579篇
  2005年   2274篇
  2004年   1768篇
  2003年   1398篇
  2002年   1258篇
  2001年   1075篇
  2000年   1048篇
  1999年   1184篇
  1998年   1035篇
  1997年   936篇
  1996年   992篇
  1995年   856篇
  1994年   782篇
  1993年   680篇
  1992年   623篇
  1991年   489篇
  1990年   418篇
  1989年   298篇
  1988年   267篇
  1987年   235篇
  1986年   166篇
  1985年   182篇
  1984年   152篇
  1983年   132篇
  1982年   98篇
  1981年   66篇
  1980年   58篇
  1979年   37篇
  1978年   30篇
  1976年   31篇
  1975年   36篇
  1974年   26篇
排序方式: 共有10000条查询结果,搜索用时 390 毫秒
981.
The power conversion efficiency (PCE) of organic solar cells (OSCs) has reached high values of over 19%. However, most of the high-efficiency OSCs are fabricated by spin-coating with toxic solvents and the optimal photoactive layer thickness is limited to 100 nm, limiting practical development of OSCs. It is a great challenge to obtain ideal morphology for high-efficiency thick-film OSCs when using non-halogenated solvents due to the unfavorable film formation kinetics. Herein, high-efficiency ternary thick-film (300 nm) OSCs with PCE of 15.4% based on PM6:BTR-Cl:CH1007 are fabricated by hot slot-die coating using non-halogenated solvent (o-xylene) in the air. Compared to PM6:BTR-Cl:Y6 blends, the stronger pre-aggregation of CH1007 in solution induces the earlier aggregation of CH1007 molecules and longer aggregation time, and thus results in high and balanced crystallinity of donors and acceptor in CH1007-based ternary film, which led to high-carrier mobility and suppressed charge recombination. The ternary strategy is further used to fabricate high-efficiency, thick-film, large-area, and flexible devices processed from non-halogenated solvents, paving the way for industrial development of OSCs.  相似文献   
982.
Polydimethylsiloxanes (PDMS) foam as one of next-generation polymer foam materials shows poor surface adhesion and limited functionality, which greatly restricts its potential applications. Fabrication of advanced PDMS foam materials with multiple functionalities remains a critical challenge. In this study, unprecedented self-adhesive PDMS foam materials are reported with worm-like rough structure and reactive groups for fabricating multifunctional PDMS foam nanocomposites decorated with MXene/cellulose nanofiber (MXene/CNF) interconnected network by a facile silicone foaming and dip-coating strategy followed by silane surface modification. Interestingly, such self-adhesive PDMS foam produces strong interfacial adhesion with the hybrid MXene/CNF nano-coatings. Consequently, the optimized PDMS foam nanocomposites have excellent surface super-hydrophobicity (water contact angle of ≈159o), tunable electrical conductivity (from 10−8 to 10 S m−1), stable compressive cyclic reliability in both wide-temperature range (from −20 to 200 oC) and complex environments (acid, sodium, and alkali conditions), outstanding flame resistance (LOI value of >27% and low smoke production rate), good thermal insulating performance and reliable strain sensing in various stress modes and complex environmental conditions. It provides a new route for the rational design and development of advanced PDMS foam nanocomposites with versatile multifunctionalities for various promising applications such as intelligent healthcare monitoring and fire-safe thermal insulation.  相似文献   
983.
Photocatalytic selective oxidation of 5-hydroxymethylfurfural (HMF) coupled H2 production offers a promising approach to producing valuable chemicals. Herein, an efficient in situ topological transformation tactic is developed for producing porous O-doped ZnIn2S4 nanosheets for HMF oxidation cooperative with H2 evolution. Aberration-corrected high-angle annular dark-field scanning TEM images show that the hierarchical porous O-ZIS-120 possesses abundant atomic scale edge steps and lattice defects, which is beneficial for electron accumulation and molecule adsorption. The optimal catalyst (O-ZIS-120) exhibits remarkable performance with 2,5-diformylfuran (DFF) yields of 1624 µmol h−1 g−1 and the selectivity of >97%, simultaneously with the H2 evolution rate of 1522 µmol h−1 g−1. Mechanistic investigations through theoretical calculations show that O in the O-ZIS-120 lattice can reduce the oxidation energy barrier of hydroxyl groups of HMF. In situ attenuated total reflection surface-enhanced infrared absorption spectroscopy (ATR-SEIRAS) results reveal that DFF* (C4H2(CHO)2O*) intermediate has a weak interaction with O-ZIS-120 and desorb as the final product. This study elucidates the topotactic structural transitions of 2D materials simultaneously with electronic structure modulation for efficient photocatalytic DFF production.  相似文献   
984.
The development of high-performance (K,Na)NbO3 (KNN)-based lead-free piezoceramics for next-generation electronic devices is crucial for achieving environmentally sustainable society. However, despite recent improvements in piezoelectric coefficients, correlating their properties to underlying multiscale structures remains a key issue for high-performance KNN-based ceramics with complex phase boundaries. Here, this study proposes a medium-entropy strategy to design “local polymorphic distortion” in conjunction with the construction of uniformly oversize grains in the newly developed KNN solid-solution, resulting in a novel large-size hierarchical domain architecture (≈0.7 µm wide). Such a structure not only facilitates polarization rotation but also ensures a large residual polarization, which significantly improves the piezoelectricity (≈3.2 times) and obtains a giant energy harvesting performance (Wout = 2.44 mW, PD = 35.32 µW mm−3, outperforming most lead-free piezoceramics). This study confirms the coexistence of multiphase through the atomic-resolution polarization features and analyzes the domain/phase transition mechanisms using in situ electric field structural characterizations, revealing that the electric field induces highly effective multiscale polarization configuration transitions based on T–O–R sequential phase transitions. This study demonstrates a new strategy for designing high-performance piezoceramics and facilitates the development of lead-free piezoceramic materials in energy harvesting applications.  相似文献   
985.
Although the piezo-catalysis is promising for the environmental remediation and biomedicine, the piezo-catalytic properties of various piezoelectric materials are limited by low carrier concentrations and mobility, and rapid electron-hole pair recombination, and reported regulating strategies are quite complex and difficult. Herein, a new and simple strategy, integrating phase boundary engineering and defect engineering, to boost the piezo-catalytic activity of potassium sodium niobate ((K, Na)NbO3, KNN) based materials is innovatively proposed. Tur strategy is validated by exampling 0.96(K0.48Na0.52)Nb0.955Sb0.045O3-0.04(BixNa4-3x)0.5ZrO3-0.3%Fe2O3 material having phase boundary engineering and conducted the defect engineering via the high-energy sand-grinding. A high reaction rate constant k of 92.49 × 10−3 min−1 in the sand-grinding sample is obtained, which is 2.40 times than that of non-sand-grinding one and superior to those of other representative lead-free perovskite piezoelectric materials. Meanwhile, the sand-grinding sample has remarkable bactericidal properties against Escherichia coli and Staphylococcus aureus. Superior piezo-catalytic activities originate from the enhanced electron-hole pair separation and the increased carrier concentration. This study provides a novel method for improving the piezo-catalytic activities of lead-free piezoelectric materials and holds great promise for harnessing natural energy and disease treatment.  相似文献   
986.
Developing low-cost and high-efficient bifunctional catalysts for hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) is greatly significant for water electrolysis. Here, Ni3N-CeO2/NF heterostructure is synthesized on the nickel foam, and it exhibits excellent HER and OER performance. As a result, the water electrolyzer based on Ni3N-CeO2/NF bifunctional catalyst only needs 1.515 V@10 mA cm−2, significantly better than that of Pt/C||IrO2 catalysts. In situ characterizations unveil that CeO2 plays completely different roles in HER and OER processes. In situ infrared spectroscopy and density functional theory calculations indicate that the introduction of CeO2 can optimizes the structure of interface water, and the synergistic effect of Ni3N and CeO2 improve the HER activity significantly, while the in situ Raman spectra reveal that CeO2 accelerates the reconstruction of OV (oxygen vacancy)-rich NiOOH for boosting OER. This study clearly unlocks the different catalytic mechanisms of CeO2 for boosting the HER and OER activity of Ni3N for water splitting, which provides the useful guidance for designing the high-performance bifunctional catalysts for water splitting.  相似文献   
987.
Moisture–electric generator (MEG)-based blue energy is widely studied. There is still a significant challenge in improving the power of the MEGs system and expanding its application in self-powered electronic skin. Inspired by the structure of ferns, a biomimetic moisture–electric aerogel is designed to collect energy. Polyvinyl alcohol dendritic colloids act as “roots” and “stems” to provide support and channels to transport water molecules. Meanwhile, “leaf-like” graphene oxide sheets generate electricity through direct interaction with water. Besides, based on the above biomimetic structure, this work further enhances the output performance of MEGs by increasing the specific surface area (120.4 m2 g−1) and introducing an ultra-high ion density gradient (from −35 to +37 mV). Meanwhile, due to the excellent water absorption, the MEGs show good salt resistance and cyclic stability. By constructing unique biomimetic structures, ultra-high ion density gradient, and regulating environmental conditions, a high-performance MEG is obtained, including ultra-high open-circuit voltage (1.9 V) and short-circuit current (82.5 µA), the industry-leading power density among MEGs with continuous output is reported in the literature (22.55 µW cm−2). Besides, the MEGs can accurately respond to environmental and pressure changes, showing its application potential in self-powered electronic skin.  相似文献   
988.
Temperature variation-induced thermoelectric catalytic efficiency of thermoelectric material is simultaneously restricted by its electrical conductivity, Seebeck coefficient, and thermal conductivity. Herein, Bi2Te3 nanosheets are in situ grown on reduced graphene oxides (rGO) to generate an efficient photo-thermoelectric catalyst (rGO-Bi2Te3). This system exhibits phonon scattering effect and extra carrier transport channels induced by the formed heterointerface between rGO and Bi2Te3, which improves the power factor value and reduces thermal conductivity, thus enhancing the thermoelectric performance of 2.13 times than single Bi2Te3. The photo-thermoelectric catalysis of rGO-Bi2Te3 significantly improves the reactive oxygen species yields, resulting from the effective electron–hole separation caused by the unique thermoelectric field and heterointerfaces of rGO-Bi2Te3. Correspondingly, the electrospinning membranes containing rGO-Bi2Te3 nanosheets exhibit high antibacterial efficiency in vivo (99.35 ± 0.29%), accelerated tissue repair ability, and excellent biosafety. This study provides an insight into heterointerface design in photo-thermoelectric catalysis.  相似文献   
989.
As one of the high-energy cathode materials of lithium-ion batteries (LIBs), lithium-rich-layered oxide with “single-crystal” characteristic (SC-LLO) can effectively restrain side reactions and cracks due to the reduced inner boundaries and enhanced mechanical stabilities. However, there are still high challenges for SC-LLO with diverse performance requirements, especially on their cycle stability improvement. Herein, a novel concentration gradient “single-crystal” LLO (GSC-LLO), with gradually decreasing Mn and increasing Ni contents from center to surface, is designed and prepared by combining co-precipitation and molten-salt sintering methods, yielding a capacity retention of 97.6% and an energy density retention of 95.8% within 100 cycles at 0.1 C. The enhanced performance is mostly attributed to the gradient-induced stabilized structure, free of cracks and less spinel-like structure formation after long-term cycling. Furthermore, the gradient design is also beneficial to the safety of LLOs as suggested by the improved thermal stability and reduced gas release. This study provides an effective strategy to prepare high-energy, high-stability, and high-safety LLOs for advanced LIBs.  相似文献   
990.
The exceptional photophysical properties of 3D organic–inorganic lead halide hybrids (OILHs) endow their significant potential for usage in optoelectronics, which has sparked intense research on novel 3D OILHs and associated applications. However, constructing new 3D OILHs based on large organic cations suffers from tough challenges due to the limitation of the Goldschmidt tolerance factor rule, let alone further explorations of their practical applications. Herein, a brand-new 3D lead chloride hybrid, (1MPZ)Pb4Cl10·H2O ( 1 , 1MPZ = 1-methylpiperazine) is reported, featuring a dense 3D lead chloride framework made of the corner-, edge-, and face-shared lead chloride polyhedra. 1 presents a broadband white light emission with a large Stokes shift and a nanosecond photoluminescence lifetime, which originates from radiative recombination of self-trapped excitons (STEs) induced by the highly distorted structure. Such a reabsorption-free and fast-decayed STEs emission coupling with the dense 3D architecture further enables 1 with effective X-ray scintillation with good sensitivity. Impressively, 1 also shows superior environmental and radiation stability. This study provides a new 3D OILH with appealing luminescence, not only expanding the 3D OILH family but also inspiring the exploitation of their optoelectronic applications.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号