首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   49287篇
  免费   6352篇
  国内免费   4747篇
化学   25773篇
晶体学   361篇
力学   2227篇
综合类   241篇
数学   4280篇
物理学   13548篇
无线电   13956篇
  2024年   169篇
  2023年   1145篇
  2022年   1362篇
  2021年   1865篇
  2020年   1786篇
  2019年   1599篇
  2018年   1380篇
  2017年   1325篇
  2016年   1880篇
  2015年   2035篇
  2014年   2476篇
  2013年   3184篇
  2012年   3936篇
  2011年   3859篇
  2010年   2785篇
  2009年   2754篇
  2008年   2973篇
  2007年   2643篇
  2006年   2560篇
  2005年   2252篇
  2004年   1747篇
  2003年   1390篇
  2002年   1245篇
  2001年   1071篇
  2000年   1039篇
  1999年   1175篇
  1998年   1032篇
  1997年   934篇
  1996年   990篇
  1995年   856篇
  1994年   779篇
  1993年   678篇
  1992年   620篇
  1991年   486篇
  1990年   415篇
  1989年   298篇
  1988年   266篇
  1987年   235篇
  1986年   166篇
  1985年   182篇
  1984年   152篇
  1983年   131篇
  1982年   98篇
  1981年   66篇
  1980年   58篇
  1979年   38篇
  1978年   30篇
  1976年   31篇
  1975年   36篇
  1974年   26篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
991.
Constitutive androstane receptor (CAR) activation has found to ameliorate diabetes in animal models. However, no CAR agonists are available clinically. Therefore, a safe and effective CAR activator would be an alternative option. In this study, sixty courmarin derivatives either synthesized or purified from Artemisia capillaris were screened for CAR activation activity. Chemical modifications were on position 5,6,7,8 with mono-, di-, tri-, or tetra-substitutions. Among all the compounds subjected for in vitro CAR activation screening, 6,7-diprenoxycoumarin was the most effective and was selected for further preclinical studies. Chemical modification on the 6 position and unsaturated chains were generally beneficial. Electron-withdrawn groups as well as long unsaturated chains were hazardous to the activity. Mechanism of action studies showed that CAR activation of 6,7-diprenoxycoumarin might be through the inhibition of EGFR signaling and upregulating PP2Ac methylation. To sum up, modification mimicking natural occurring coumarins shed light on CAR studies and the established screening system provides a rapid method for the discovery and development of CAR activators. In addition, one CAR activator, scoparone, did showed anti-diabetes effect in db/db mice without elevation of insulin levels.  相似文献   
992.
Nasopharyngeal carcinoma (NPC) frequently occurs in Southern China. The main treatments of NPC are chemotherapy and radiotherapy. However, chemo-resistance arises as a big obstacle in treating NPC. Therefore, there is a great need to develop new compounds that could reverse tumor drug resistance. In this study, eight matrine derivatives containing thiophene group were designed and synthesized. Structures of these 8 compounds were characterized by 1H-NMR, 13C-NMR, and high-resolution mass spectrometer (HRMS). The cytotoxicity and preliminary synergistic effects of these 8 compounds were detected against nasopharyngeal carcinoma (NPC) cells and cisplatin-resistant NPC cells (CNE2/CDDP), respectively. Furthermore, the in vivo and in vitro tumor resistance reversal effects of compound 3f were evaluated. Moreover, docking studies were performed in Bclw (2Y6W). The results displayed that compound 3f showed synergistic inhibitory effects with cisplatin against CNE2/CDDP cells proliferation via apoptosis induction. Docking results revealed that compound 3f may exert its effects via inhibiting anti-apoptosis protein Bcl-w.  相似文献   
993.
Desulfurized gypsum (DG) as a soil modifier imparts it with bulk solid sulfite. The Fe(III)–sulfite process in the liquid phase has shown great potential for the rapid removal of As(III), but the performance and mechanism of this process using DG as a sulfite source in aqueous solution remains unclear. In this work, employing solid CaSO3 as a source of SO32−, we have studied the effects of different conditions (e.g., pH, Fe dosage, sulfite dosage) on As(III) oxidation in the Fe(III)–CaSO3 system. The results show that 72.1% of As(III) was removed from solution by centrifugal treatment for 60 min at near-neutral pH. Quenching experiments have indicated that oxidation efficiencies of As(III) are due at 67.5% to HO, 17.5% to SO5•− and 15% to SO4•−. This finding may have promising implications in developing a new cost-effective technology for the treatment of arsenic-containing water using DG.  相似文献   
994.
The aim of this research was to investigate the effect of the number of freeze–thaw cycles (0, 1, 3, 5, and 7) on porcine longissimus protein and lipid oxidation, as well as changes in heterocyclic aromatic amines (HAAs) and advanced glycation end products (AGEs) and their precursors. We analyzed the relationship among HAAs, AGEs, oxidation, and precursors and found the following results after seven freeze–thaw cycles. The HAAs, Norharman and Harman, were 20.33% and 16.67% higher, respectively. The AGEs, Nε-carboxyethyllysine (CEL) and Nε-carboxymethyllysine (CML), were 11.81% and 14.02% higher, respectively. Glucose, creatine, and creatinine were reduced by 33.92%, 5.93%, and 1.12%, respectively after seven freeze–thaw cycles. Norharman was significantly correlated with thiobarbituric acid reactive substances (TBARS; r2 = 0.910) and glucose (r2 = −0.914). Harman was significantly correlated to TBARS (r2 = 0.951), carbonyl (r2 = 0.990), and glucose (r2 = −0.920). CEL was correlated to TBARS (r2 = 0.992) and carbonyl (r2 = 0.933). These changes suggest that oxidation and the Maillard reaction during freeze–thaw cycles promote HAA and AGE production in raw pork.  相似文献   
995.
Nasopharyngeal carcinoma (NPC) is a common malignant head and neck tumor. Drug resistance and distant metastasis are the predominant cause of treatment failure in NPC patients. Hispidulin is a flavonoid extracted from the bioassay-guided separation of the EtOH extract of Salvia plebeia with strong anti-proliferative activity in nasopharyngeal carcinoma cells (CNE-2Z). In this study, the effects of hispidulin on proliferation, invasion, migration, and apoptosis were investigated in CNE-2Z cells. The [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] (MTT) assay and the colony formation assay revealed that hispidulin could inhibit CNE-2Z cell proliferation. Hispidulin (25, 50, 100 μM) also induced apoptosis in a dose-dependent manner in CNE-2Z cells. The expression of Akt was reduced, and the expression of the ratio of Bax/Bcl-2 was increased. In addition, scratch wound and transwell assays proved that hispidulin (6.25, 12.5, 25 μM) could inhibited the migration and invasion in CNE-2Z cells. The expressions of HIF-1α, MMP-9, and MMP-2 were decreased, while the MMPs inhibitor TIMP1 was enhanced by hispidulin. Moreover, hispidulin exhibited potent suppression tumor growth and low toxicity in CNE-2Z cancer-bearing mice at a dosage of 20 mg/kg/day. Thus, hispidulin appears to be a potentially effective agent for NPC treatment.  相似文献   
996.
Six hybrid uranyl–transition metal compounds [UO2Ni(cptpy)2(HCOO)2(DMF)(H2O)] ( 1 ), [UO2Ni(cptpy)2(BTPA)2] ( 2 ), [UO2Fe(cptpy)2(HCOO)2(DMF)(H2O)] ( 3 ), [UO2Fe(cptpy)2(BTPA)2] ( 4 ), [UO2Co(cptpy)2(HCOO)2(DMF)(H2O)] ( 5 ), and [UO2Co(cptpy)2(BTPA)2] ( 6 ), based on bifunctional ligand 4′-(4-carboxyphenyl)-2,2′:6′,2′′-terpyridine (Hcptpy) are reported (H2BTPA = 4,4′-biphenyldicarboxylic acid). Single-crystal XRD revealed that all six compounds feature similar metalloligands, which consist of two cptpy anions and one transition metal cation. The metalloligand M(cptpy)2 can be considered to be an extended linear dicarboxylic ligand with length of 22.12 Å. Compounds 1 , 3 , and 5 are isomers, and all of them feature 1D chain structures. The adjacent 1D chains are connected together by hydrogen bonds and π–π interactions to form a 3D porous structure, which is filled with solvent molecules and can be exchanged with I2. Compounds 2 , 4 , and 6 are also isomers, and all of them feature 2D honeycomb (6,3) networks with hexagonal units of dimensions 41.91×26.89 Å, which are the largest among uranyl compounds with honeycomb networks. The large aperture allows two sets of equivalent networks to be entangled together to result in a 2D+2D→3D polycatenated framework. Remarkably, these uranyl compounds exhibit high catalytic activity for cycloaddition of carbon dioxide. Moreover, the geometric and electronic structures of compounds 1 and 2 are systematically discussed on the basis of DFT calculations.  相似文献   
997.
The surface hydroxyl groups of NixCu1−x(OH)2 play a crucial role in governing their conversion efficiency into NixCu1−xOx(OH)2−x during the electro-chemical pre-activation process, thus affecting the integral ammonia oxidation reaction (AOR) reactivity. Herein, the rational design of hierarchical porous NiCu double hydroxide nanotyres (NiCu DHTs) was reported for the first time by considering hydroxyl-rich interfaces to promote pre-activation efficiency and intrinsic structural superiority (i.e., annulus, porosity) to accelerate AOR kinetics. A systematic investigation of the structure–function relationship was conducted by manipulating a series of NiCu DHs with tunable intercalations and morphologies. Remarkably, the NiCu DHTs exhibit superior AOR activity (onset potential of 1.31 V with 7.52 mA cm−2 at 1.5 V) and high ammonia sensitivity (detection limit of 9 μm ), manifesting one of the best non-noble metal AOR electrocatalysts and electro-analytical electrodetectors. This work deepens the understanding of the crucial role of surface hydroxyl groups on determining the catalytic performance in alkaline medium.  相似文献   
998.
Zirconium-based metal-organic framework materials (Zr−MOFs) have more practical usage over most conventional benchmark porous materials and even many other MOFs due to the excellent structural stability, rich coordination forms, and various active sites. However, their mass-production and application are restricted by the high-cost raw materials, complex synthesis procedures, harsh reaction conditions, and unexpected environmental impact. Based on the principles of “Green Chemistry”, considerable efforts have been done for breaking through the limitations, and significant progress has been made in the sustainable synthesis of Zr−MOFs over the past decade. In this review, the advancements of green raw materials and green synthesis methods in the synthesis of Zr−MOFs are reviewed, along with the corresponding drawbacks. The challenges and prospects are discussed and outlooked, expecting to provide guidance for the acceleration of the industrialization and commercialization of Zr−MOFs.  相似文献   
999.
The [2+1] cycloaddition reaction of a metal carbene with an alkene can produce important cyclopropane products for synthetic intermediates, materials, and pharmaceutical applications. However, this reaction is often accompanied by side reactions, such as coupling and self-coupling, so that the yield of the cyclopropanation product of non-silver transition-metal carbenes and hindered alkenes is generally lower than 50 %. To solve this problem, the addition of a low concentration of diazo compound (decomposition of sulfonyl hydrazones) to alkenes catalyzed by either CuOAc or PdCl2 was studied, but side reactions could still not be avoided. Interestingly, however, the yield of cyclopropanation products for such hindered alkenes were as high as 99 % with AgOTf as a catalyst. To explain this unexpected phenomenon, reaction pathways have been computed for four different catalysts by using DFT. By combining the results of these calculations with those obtained experimentally, it can be concluded that the efficiency of the silver catalyst is due to the barrierless concerted cycloaddition step and the kinetic inhibition of side reactions by a high concentration of alkene.  相似文献   
1000.
The study reports the first attempt to address the interplay between surface and bulk in hydride formation in ceria (CeO2) by combining experiment, using surface sensitive and bulk sensitive spectroscopic techniques on the two sample systems, i.e., CeO2(111) thin films and CeO2 powders, and theoretical calculations of CeO2(111) surfaces with oxygen vacancies (Ov) at the surface and in the bulk. We show that, on a stoichiometric CeO2(111) surface, H2 dissociates and forms surface hydroxyls (OH). On the pre-reduced CeO2−x samples, both films and powders, hydroxyls and hydrides (Ce−H) are formed on the surface as well as in the bulk, accompanied by the Ce3+ ↔ Ce4+ redox reaction. As the Ov concentration increases, hydroxyl is destabilized and hydride becomes more stable. Surface hydroxyl is more stable than bulk hydroxyl, whereas bulk hydride is more stable than surface hydride. The surface hydride formation is the kinetically favorable process at relatively low temperatures, and the resulting surface hydride may diffuse into the bulk region and be stabilized therein. At higher temperatures, surface hydroxyls can react to produce water and create additional oxygen vacancies, increasing its concentration, which controls the H2/CeO2 interaction. The results demonstrate a large diversity of reaction pathways, which have to be taken into account for better understanding of reactivity of ceria-based catalysts in a hydrogen-rich atmosphere.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号