首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   49086篇
  免费   6623篇
  国内免费   4750篇
化学   25808篇
晶体学   360篇
力学   2230篇
综合类   244篇
数学   4281篇
物理学   13555篇
无线电   13981篇
  2024年   169篇
  2023年   1150篇
  2022年   1364篇
  2021年   1810篇
  2020年   1788篇
  2019年   1600篇
  2018年   1380篇
  2017年   1326篇
  2016年   1878篇
  2015年   2039篇
  2014年   2480篇
  2013年   3188篇
  2012年   3939篇
  2011年   3868篇
  2010年   2797篇
  2009年   2762篇
  2008年   2986篇
  2007年   2649篇
  2006年   2567篇
  2005年   2256篇
  2004年   1752篇
  2003年   1391篇
  2002年   1249篇
  2001年   1074篇
  2000年   1042篇
  1999年   1179篇
  1998年   1038篇
  1997年   939篇
  1996年   991篇
  1995年   856篇
  1994年   780篇
  1993年   680篇
  1992年   623篇
  1991年   489篇
  1990年   416篇
  1989年   298篇
  1988年   268篇
  1987年   235篇
  1986年   166篇
  1985年   183篇
  1984年   152篇
  1983年   131篇
  1982年   98篇
  1981年   66篇
  1980年   58篇
  1979年   38篇
  1978年   30篇
  1976年   31篇
  1975年   36篇
  1974年   26篇
排序方式: 共有10000条查询结果,搜索用时 17 毫秒
991.
Nex-generation high-energy-density storage battery, assembled with lithium (Li)-metal anode and nickel-rich cathode, puts forward urgent demand for advanced electrolytes that simultaneously possess high security, wide electrochemical window, and good compatibility with electrode materials. Herein an intrinsically nonflammable electrolyte is designed by using 1 M lithium difluoro(oxalato)borate (LiDFOB) in triethyl phosphate (TEP) and N-methyl-N-propyl-pyrrolidinium bis(trifluoromethylsulfonyl)imide [Pyr13][TFSI] ionic liquid (IL) solvents. The introduction of IL can bring plentiful organic cations and anions, which provides a cation shielding effect and regulates the Li+ solvation structure with plentiful Li+-DFOB and Li+-TFSI complexes. The unique Li+ solvation structure can induce stable anion-derived electrolyte/electrode interphases, which effectively inhibit Li dendrite growth and suppress side reactions between TEP and electrodes. Therefore, the LiNi0.9Co0.05Mn0.05O2 (NCM90)/Li coin cell with this electrolyte can deliver stable cycling even under 4.5 V and 60 °C. Moreover, a Li-metal battery with thick NCM90 cathode (≈ 15 mg cm−2) and thin Li-metal anode (≈ 50 µm) (N/P ≈ 3), also reveals stable cycling performance under 4.4 V. And a 2.2 Ah NCM90/Li pouch cell can simultaneously possess prominent safety with stably passing the nail penetration test, and high gravimetric energy density of 470 Wh kg−1 at 4.4 V.  相似文献   
992.
As a nontoxic and cost-effective material, copper pastes have attracted great attention in both academia and industry. However, achieving the long-term stability of copper pastes remains challenging due to their susceptibility to oxidation. Therefore, stable copper nanoparticles with a Cu(0)–Cu(I) core–shell structure containing a surface passivation layer of formate ions-involved Cu(I) coordination polymers are developed. Based on the self-reducing nature of the passivation layer, the nanoparticle-based copper pastes can be sintered in <1 min, showing high electrical conductivity (220 000 S cm−1), mechanical flexibility, and long-term stability after sintering. The excellent properties of the developed copper pastes are even comparable with the ones of silver pastes. These stable copper pastes have broad applications in printed electronics (e.g., glucose sensors, RFID tags, and electromagnetic shielding films), showing great potential in the fabrication of flexible printed electronics.  相似文献   
993.
The interface energetics-modification plays an important role in improving the power conversion efficiency (PCE) among the perovskite solar cells (PSCs). Considering the low carrier mobility caused by defects in PSCs, a double-layer modification engineering strategy is adopted to introduce the “spiderman” NOBF4 (nitrosonium tetrafluoroborate) between tin dioxide (SnO2 and perovskite layers. NO+, as the interfacial bonding layer, can passivate the oxygen vacancy in SnO2, while BF4 can optimize the defects in the bulk of perovskite. This conclusion is confirmed by theoretical calculation and transmission electron microscopy (TEM). The synergistic effect of NO+ and BF4 distinctly heightens the carrier extraction efficiency, and the PCE of PSCs is 24.04% with a fill factor (FF) of 82.98% and long-term stability. This study underlines the effectiveness of multifunctional additives in improving interface contact and enhancing PCE of PSCs.  相似文献   
994.
The development of low-cost and effective oxygen evolution reaction (OER) electrocatalysts to expedite the slow kinetics of water splitting is crucial for increasing the efficiency of energy conversion from electricity to hydrogen fuel. Herein, 3D bicontinuous nanoporous Co@CoO/RuO2 composites with tunable sizes and chemical compositions are fabricated by introducing vapor phase dealloying of cobalt-based alloys. The influence of physical parameters on the formation of nanoporous Co substrates with various feature ligament sizes is systematically investigated. The CoO/RuO2 shell is constructed by integrating a thin layer of RuO2 on the inner surface of nanoporous Co, where the CoO interlayer is formed by annealing oxidization. The composite catalyst delivers an ultralow overpotential of 198 mV at 10 mA cm−2, Tafel slope of 57.1 mV dec−1, and long-term stability of 50 h. The superior OER activity and fast reaction kinetics are attributed to charge transfer through the coupling of Co O Ru bonds at the interface and the excellent nanopore connectivity, while the durability originates from the highly stable CoO/RuO2 interface.  相似文献   
995.
Creating high-speed soft actuators will have broad engineering and technological applications. Snapping provides a power-amplified mechanism to achieve rapid movements in soft actuators that typically show slow movements. However, precise control of snapping dynamics (e.g., speed and direction of launching or jumping) remains a daunting challenge. Here, a bioinspired design principle is presented that harnesses a reconfigurable constraint structure integrated into a photoactive liquid crystal elastomer actuator to enable tunable and programmable control over its snapping dynamics. By reconfiguring constrained fin-array-shaped structure, the snapping dynamics of the structured actuator, such as launching or jumping angle and height, motion speed, and release force can be on-demand tuned, thus enabling controllable catapult motion and programmable jumping. Moreover, the structured actuators exhibit a unique combination of ultrafast moving speed (up to 2.5 m s−1 in launching and 0.22 m s−1 in jumping), powerful ejection (long ejection distance of ≈20 cm, 35 mg ball), and high jumping height (≈8 cm, 40 times body lengths), which few other soft actuators can achieve. This study provides a new universal design paradigm for realizing controllable rapid movements and high-power motions in soft matter, which are useful for building high-performance soft robotics and actuation devices.  相似文献   
996.
Single crystal metal halide perovskites thin films are considered to be a promising optical, optoelectronic materials with extraordinary performance due to their low defect densities. However, it is still difficult to achieve large-scale perovskite single-crystal thin films (SCTFs) with tunable bandgap by vapor-phase deposition method. Herein, the synthesis of CsPbCl3(1–x)Br3x SCTFs with centimeter size (1 cm × 1 cm) via vapor-phase deposition is reported. The Br composition of CsPbCl3(1–x)Br3x SCTFs can be gradually tuned from x = 0 to x = 1, leading the corresponding bandgap to change from 2.29 to 2.91 eV. Additionally, an low-threshold (≈23.9 µJ cm−2) amplified spontaneous emission is achieved based on CsPbCl3(1–x)Br3x SCTFs at room temperature, and the wavelength is tuned from 432 to 547 nm by varying the Cl/Br ratio. Importantly, the high-quality CsPbCl3(1–x)Br3x SCTFs are ideal optical gain medium with high gain up to 1369.8 ± 101.2 cm−1. This study not only provides a versatile method to fabricate high quality CsPbCl3(1–x)Br3x SCTFs with different Cl/Br ratio, but also paves the way for further research of color-tunable perovskite lasing.  相似文献   
997.
998.

The article presents the buck converter for the application on headlights of vehicle with chip-level design. The LED components are used as for lighting source, which near/far lights are controlled with high-current switching circuit in the chip. The level-shift circuit and its current driver is proposed to control the input of high-voltage power MOS. The bypass method is presented to reduce the transient time as load current changes suddenly. The input voltage widely ranges from 8 to 21 V while keeping a stable output voltage with 6 V. The chip current can output from 20 to 1500 mA with excellent regulation. This chip had been implemented with TSMC0.25 µm HV- process, and the size of the circuit layout is about 8.6 mm2, where includes power switch and far/near lighting switches. Measurements show that peak efficiency can achieve 86.3%. The power regulation is excellent, where the load regulation is only 0.3%, and the line regulation is only 0.5%.

  相似文献   
999.
Huang  Huajie  Dai  Junjie  Dou  Long  Liu  Junfu  Liu  Yunpeng  Chen  Taotao  Wu  Tianxiang  Li  Junhui 《Journal of Electronic Testing》2022,38(2):195-203
Journal of Electronic Testing - In order to control the stable and controllable loading of the wafer level microprobe test bench, the magnetorheological (MR) damper used in the existing research...  相似文献   
1000.
AIN thin films were deposited on c-,a-and r-plane sapphire substrates by the magnetron sputtering technique.The in-fluence of high-temperature thermal annealing (HTTA) on the structural,optical properties as well as surface stoichiometry were comprehensively investigated.The significant narrowing of the (0002) diffraction peak to as low as 68 arcsec of AIN after HTTA implies a reduction of tilt component inside the AIN thin films,and consequently much-reduced dislocation densities.This is also supported by the appearance of E2(high) Raman peak and better Al-N stoichiometry after HTTA.Furthermore,the in-creased absorption edge after HTTA suggests a reduction of point defects acting as the absorption centers.It is concluded that HTTA is a universal post-treatment technique in improving the crystalline quality of sputtered AIN regardless of sapphire orienta-tion.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号