首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2567篇
  免费   251篇
  国内免费   24篇
化学   1535篇
晶体学   23篇
力学   41篇
数学   144篇
物理学   351篇
无线电   748篇
  2024年   6篇
  2023年   35篇
  2022年   36篇
  2021年   66篇
  2020年   62篇
  2019年   78篇
  2018年   50篇
  2017年   69篇
  2016年   107篇
  2015年   88篇
  2014年   131篇
  2013年   166篇
  2012年   230篇
  2011年   205篇
  2010年   127篇
  2009年   119篇
  2008年   152篇
  2007年   148篇
  2006年   129篇
  2005年   123篇
  2004年   109篇
  2003年   91篇
  2002年   91篇
  2001年   60篇
  2000年   70篇
  1999年   34篇
  1998年   30篇
  1997年   27篇
  1996年   21篇
  1995年   19篇
  1994年   19篇
  1993年   15篇
  1992年   17篇
  1991年   16篇
  1990年   7篇
  1989年   9篇
  1988年   6篇
  1987年   6篇
  1986年   5篇
  1985年   5篇
  1983年   7篇
  1982年   3篇
  1981年   5篇
  1979年   6篇
  1978年   5篇
  1976年   4篇
  1975年   3篇
  1974年   7篇
  1973年   6篇
  1933年   2篇
排序方式: 共有2842条查询结果,搜索用时 15 毫秒
131.
A universal low optimum doping concentration of below 5% was demonstrated in phosphorescent organic light-emitting diodes (PHOLEDs) by managing the energy levels of charge transport materials. The device performances of PHOLEDs could be optimized at a low doping concentration of 3% irrespective of the host material in the emitting layer. The suppression of charge trapping and hopping by the dopant through charge transport layer engineering optimized the device performance at low doping concentration. In addition, it was revealed that PHOLEDs with low optimum doping concentration show better quantum efficiency, low efficiency roll-off and low doping concentration dependency of the device performance.  相似文献   
132.
Many recently developed soft, skin‐like electronics with high performance circuits and low modulus encapsulation materials can accommodate large bending, stretching, and twisting deformations. Their compliant mechanics also allows for intimate, nonintrusive integration to the curvilinear surfaces of soft biological tissues. By introducing a stacked circuit construct, the functional density of these systems can be greatly improved, yet their desirable mechanics may be compromised due to the increased overall thickness. To address this issue, the results presented here establish design guidelines for optimizing the deformable properties of stretchable electronics with stacked circuit layers. The effects of three contributing factors (i.e., the silicone interlayer, the composite encapsulation, and the deformable interconnects) on the stretchability of a multilayer system are explored in detail via combined experimental observation, finite element modeling, and theoretical analysis. Finally, an electronic module with optimized design is demonstrated. This highly deformable system can be repetitively folded, twisted, or stretched without observable influences to its electrical functionality. The ultrasoft, thin nature of the module makes it suitable for conformal biointegration.  相似文献   
133.
A class of thin, lightweight, flexible, near‐field communication (NFC) devices with ultraminiaturized format is introduced, and systematic investigations of the mechanics, radio frequency characteristics, and materials aspects associated with their optimized construction are presented. These systems allow advantages in mechanical strength, placement versatility, and minimized interfacial stresses compared to other NFC technologies and wearable electronics. Detailed experimental studies and theoretical modeling of the mechanical and electromagnetic properties of these systems establish understanding of the key design considerations. These concepts can apply to many other types of wireless communication systems including biosensors and electronic implants.  相似文献   
134.
135.
The effects of the incorporation of semiconducting single‐walled nanotubes (sc‐SWNTs) with high purity on the bulk heterojunction (BHJ) organic solar cell (OSC) based on regioregular poly(3‐hexylthiophene‐2,5‐diyl):[6,6]‐phenyl‐C61‐butyric acid methyl ester (rr‐P3HT:PCBM) are reported for the first time. The sc‐SWNTs induce the organization of the polymer phase, which is evident from the increase in crystallite size, the red‐shifted absorption characteristics and the enhanced hole mobility. By incorporating sc‐SWNTs, OSC with a power conversion efficiency (PCE) as high as 4% can be achieved, which is ≈8% higher than our best control device. A novel application of sc‐SWNTs in improving the thermal stability of BHJ OSCs is also demonstrated. After heating at 150 °C for 9 h, it is observed that the thermal stability of rr‐P3HT:PCBM devices improves by more than fivefold with inclusion of sc‐SWNTs. The thermal stability enhancement is attributed to a more suppressed phase separation, as shown by the remarkable decrease in the formation of sizeable crystals, which in turn can be the outcome of a more controlled crystallization of the blend materials on the nanotubes.  相似文献   
136.
The fluorobenzotriazole (FTAZ)‐based copolymer donors are promising candidates for nonfullerene polymer solar cells (PSCs), but suffer from relatively low photovoltaic performance due to their unsuitable energy levels and unfavorable morphology. Herein, three polymer donors, L24 , L68 , and L810 , based on a chlorinated‐thienyl benzodithiophene (BDT‐2Cl) unit and FTAZ with different branched alkyl side chain, are synthesized. Incorporation of a chlorine (Cl) atom into the BDT unit is found to distinctly optimize the molecular planarity, energy levels, and improve the polymerization activity. Impressively, subtle side chain length of FTAZ realizes a dramatic improvement in all the device parameters, as revealed by the short‐current density (Jsc) improved from 7.41 to 20.76 mA cm?2, fill‐factor from 36.3 to 73.5%, and even the open‐circuit voltage (Voc) from 0.495 to 0.790 V. The best power conversion efficiency (PCE) of 12.1% is obtained from the L810‐based device, which is one of the highest values reported for FTAZ‐based PSCs so far. Notably, the corresponding external quantum efficiency curve keeps a very prominent value up to 80% from 500 to 800 nm. The notable performance is discovered from the reduced energy loss, improved molecular face‐on orientation, the down‐shifted energy levels, and optimized absorption coefficient regulated by side‐chain engineering.  相似文献   
137.
This paper describes some of the key issues associated with the patterning of metal electrodes of sub-micron (especially at the critical dimension (CD) of 0.15 μm) dynamic random access memory devices. Due to reactive ion etching lag, the Pt etch rate decreased drastically below the CD of 0.20 μm and thus K-th storage node electrode with the CD of 0.15 μm could not be fabricated using the Pt electrodes. Accordingly, we have proposed novel techniques to surmountly-the above difficulties. The Ru electrode cannot for the stack-type structure is introduced and alternative multischemes based on the introduction of the concave-type selfstructure upto using semi-Pt or Ru as an electrode material are outlined respectively.  相似文献   
138.
139.
140.
The cytotoxicity of alumina nanoparticles (NPs) was investigated for a wide range of concentration (25–200 μg/mL) and incubation time (0–72 h) using floating cells (THP-1) and adherent cells (J774A.1, A549, and 293). Alumina NPs were gradually agglomerated over time although a significant portion of sedimentation occurred at the early stage within 6 h. A decrease of the viability was found in floating (THP-1) and adherent (J774A.1 and A549) cells in a dose-dependent manner. However, the time-dependent decrease in cell viability was observed only in adherent cells (J774A.1 and A549), which is predominantly related with the sedimentation of alumina NPs in cell culture medium. The uptake of alumina NPs in macrophages and an increased cell-to-cell adhesion in adherent cells were observed. There was no significant change in the viability of 293 cells. This in vitro test suggests that the agglomeration and sedimentation of alumina NPs affected cellular viability depending on cell types such as monocytes (THP-1), macrophages (J774A.1), lung carcinoma cells (A549), and embryonic kidney cells (293).  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号