首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   35篇
  免费   0篇
化学   4篇
力学   1篇
数学   1篇
物理学   14篇
无线电   15篇
  2010年   1篇
  2007年   2篇
  2005年   1篇
  2004年   3篇
  2003年   1篇
  2002年   1篇
  2001年   2篇
  2000年   1篇
  1999年   1篇
  1997年   1篇
  1988年   2篇
  1985年   2篇
  1981年   1篇
  1977年   1篇
  1976年   2篇
  1975年   4篇
  1974年   3篇
  1973年   2篇
  1972年   1篇
  1970年   1篇
  1969年   1篇
  1898年   1篇
排序方式: 共有35条查询结果,搜索用时 15 毫秒
21.
22.
23.
In this paper, we describe an approach to content-based retrieval of medical images from a database, and provide a preliminary demonstration of our approach as applied to retrieval of digital mammograms. Content-based image retrieval (CBIR) refers to the retrieval of images from a database using information derived from the images themselves, rather than solely from accompanying text indices. In the medical-imaging context, the ultimate aim of CBIR is to provide radiologists with a diagnostic aid in the form of a display of relevant past cases, along with proven pathology and other suitable information. CBIR may also be useful as a training tool for medical students and residents. The goal of information retrieval is to recall from a database information that is relevant to the user's query. The most challenging aspect of CBIR is the definition of relevance (similarity), which is used to guide the retrieval machine. In this paper, we pursue a new approach, in which similarity is learned from training examples provided by human observers. Specifically, we explore the use of neural networks and support vector machines to predict the user's notion of similarity. Within this framework we propose using a hierarchal learning approach, which consists of a cascade of a binary classifier and a regression module to optimize retrieval effectiveness and efficiency. We also explore how to incorporate online human interaction to achieve relevance feedback in this learning framework. Our experiments are based on a database consisting of 76 mammograms, all of which contain clustered microcalcifications (MCs). Our goal is to retrieve mammogram images containing similar MC clusters to that in a query. The performance of the retrieval system is evaluated using precision-recall curves computed using a cross-validation procedure. Our experimental results demonstrate that: 1) the learning framework can accurately predict the perceptual similarity reported by human observers, thereby serving as a basis for CBIR; 2) the learning-based framework can significantly outperform a simple distance-based similarity metric; 3) the use of the hierarchical two-stage network can improve retrieval performance; and 4) relevance feedback can be effectively incorporated into this learning framework to achieve improvement in retrieval precision based on online interaction with users; and 5) the retrieved images by the network can have predicting value for the disease condition of the query.  相似文献   
24.
Spatiotemporal reconstruction of cardiac-gated SPECT images permits us to obtain valuable information related to cardiac function. However, the task of reconstructing this four-dimensional (4-D) data set is computation intensive. Typically, these studies are reconstructed frame-by-frame: a nonoptimal approach because temporal correlations in the signal are not accounted for. In this work, we show that the compression and signal decorrelation properties of the Karhunen-Loève (KL) transform may be used to greatly simplify the spatiotemporal reconstruction problem. The gated projections are first KL transformed in the temporal direction. This results in a sequence of KL-transformed projection images for which the signal components are uncorrelated along the time axis. As a result, the 4-D reconstruction task is simplified to a series of three-dimensional (3-D) reconstructions in the KL domain. The reconstructed KL components are subsequently inverse KL transformed to obtain the entire spatiotemporal reconstruction set. Our simulation and clinical results indicate that KL processing provides image sequences that are less noisy than are conventional frame-by-frame reconstructions. Additionally, by discarding high-order KL components that are dominated by noise, we can achieve savings in computation time because fewer reconstructions are needed in comparison to conventional frame-by-frame reconstructions.  相似文献   
25.
Clustered microcalcifications (MC) in mammograms can be an important early sign of breast cancer in women. Their accurate detection is important in computer-aided detection (CADe). In this paper, we propose the use of a recently developed machine-learning technique--relevance vector machine (RVM)--for detection of MCs in digital mammograms. RVM is based on Bayesian estimation theory, of which a distinctive feature is that it can yield a sparse decision function that is defined by only a very small number of so-called relevance vectors. By exploiting this sparse property of the RVM, we develop computerized detection algorithms that are not only accurate but also computationally efficient for MC detection in mammograms. We formulate MC detection as a supervised-learning problem, and apply RVM as a classifier to determine at each location in the mammogram if an MC object is present or not. To increase the computation speed further, we develop a two-stage classification network, in which a computationally much simpler linear RVM classifier is applied first to quickly eliminate the overwhelming majority, non-MC pixels in a mammogram from any further consideration. The proposed method is evaluated using a database of 141 clinical mammograms (all containing MCs), and compared with a well-tested support vector machine (SVM) classifier. The detection performance is evaluated using free-response receiver operating characteristic (FROC) curves. It is demonstrated in our experiments that the RVM classifier could greatly reduce the computational complexity of the SVM while maintaining its best detection accuracy. In particular, the two-stage RVM approach could reduce the detection time from 250 s for SVM to 7.26 s for a mammogram (nearly 35-fold reduction). Thus, the proposed RVM classifier is more advantageous for real-time processing of MC clusters in mammograms.  相似文献   
26.
In tomographic imaging, dynamic images are typically obtained by reconstructing the frames of a time sequence independently, one by one. A disadvantage of this frame-by-frame reconstruction approach is that it fails to account. For temporal correlations in the signal. Ideally, one should treat the entire image sequence as a single spatio-temporal signal. However, the resulting reconstruction task becomes computationally intensive. Fortunately, as the authors show in this paper, the spatio-temporal reconstruction problem call be greatly simplified by first applying a temporal Karhunen-Loeve (KL) transformation to the imaging equation. The authors show that if the regularization operator is chosen to be separable into space and time components, penalized weighted least squares reconstruction of the entire image sequence is approximately equivalent to frame-by-frame reconstruction in the space-KL domain. By this approach, spatio-temporal reconstruction can be achieved at reasonable computational cost. One can achieve further computational savings by discarding high-order KL components to avoid reconstructing them. Performance of the method is demonstrated through statistical evaluations of the bias-variance tradeoff obtained by computer simulation reconstruction  相似文献   
27.
Sputtered films of nominal composition Nb3Ge deposited onto hot substrates, of the type recently found by Gavaler to have superconductivity onsets at 22.3° K, have now been obtained with a maximum onset temperature of 23.2 ± 0.2° K and a transition width of ~ 1.2° K. The sputtering conditions necessary to achieve these results are discussed and suggest that the high Tc phase may be detrimentally affected by the presence of high energy particles present under normal sputtering conditions.  相似文献   
28.
Many image-reconstruction methods have been proposed to improve the spatial resolution of positron emission tomography (PET) images and, thus, to produce better quantification. However, these techniques, which are designed for static images, may be inadequate for good reconstruction from dynamic data. The authors present a simple, but effective, reconstruction approach intended specifically for dynamic studies. First, the level of noise in dynamic PET data is reduced by smoothing along the time axis using a low-order approximation. Next, the denoised sinograms are restored spatially by the method of projections onto convex sets. Finally, images are reconstructed from the restored sinograms by ordinary filtered backprojection. The authors present experimental results that demonstrate substantial improvements in region-of-interest quantification in actual and simulated dopamine D-2 neuroreceptor-imaging studies of a monkey brain  相似文献   
29.
The esterolysis ofm-nitrophenyl acetate (mNPA) andp-nitrophenyl acetate (pNPA), complexed with -cyclodextrin, was investigated in the solid state. At 117 and 140°C, the initial half-times ofmNPA esterolysis were 30 and 24 h, respectively, whereasp NPA esterolysis was undetectably slow. At 117°C, themNPA reaction proceeded to completion, and cyclodextrin acetate andm-nitrophenol products were identified. At 140°C,the initial rate was followed by a slow phase with a half-time of 130 h, evidently due to a structural change in the complex. Themeta/para selectivity of the solid-state reaction is considerably enhanced over the selectivity reported in aqueous solution.  相似文献   
30.
A support vector machine approach for detection of microcalcifications   总被引:18,自引:0,他引:18  
In this paper, we investigate an approach based on support vector machines (SVMs) for detection of microcalcification (MC) clusters in digital mammograms, and propose a successive enhancement learning scheme for improved performance. SVM is a machine-learning method, based on the principle of structural risk minimization, which performs well when applied to data outside the training set. We formulate MC detection as a supervised-learning problem and apply SVM to develop the detection algorithm. We use the SVM to detect at each location in the image whether an MC is present or not. We tested the proposed method using a database of 76 clinical mammograms containing 1120 MCs. We use free-response receiver operating characteristic curves to evaluate detection performance, and compare the proposed algorithm with several existing methods. In our experiments, the proposed SVM framework outperformed all the other methods tested. In particular, a sensitivity as high as 94% was achieved by the SVM method at an error rate of one false-positive cluster per image. The ability of SVM to out perform several well-known methods developed for the widely studied problem of MC detection suggests that SVM is a promising technique for object detection in a medical imaging application.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号